
ARMlock: Hardware-based Fault Isolation for ARM

Yajin Zhou∗
North Carolina State University

yajin_zhou@ncsu.edu

Xiaoguang Wang∗
Xi’an Jiaotong University
xgwang@cs.fsu.edu

Yue Chen
Florida State University
ychen@cs.fsu.edu

Zhi Wang
Florida State University
zwang@cs.fsu.edu

ABSTRACT
Software fault isolation (SFI) is an effective mechanism to confine
untrusted modules inside isolated domains to protect their host ap-
plications. Since its debut, researchers have proposed different SFI
systems for many purposes such as safe execution of untrusted na-
tive browser plugins. However, most of these systems focus on the
x86 architecture. In recent years, ARM has become the dominant
architecture for mobile devices and gains in popularity in data cen-
ters. Hence there is a compelling need for an efficient SFI system
for the ARM architecture. Unfortunately, existing systems either
have prohibitively high performance overhead or place various lim-
itations on the memory layout and instructions of untrusted mod-
ules.

In this paper, we propose ARMlock, a hardware-based fault iso-
lation for ARM. It uniquely leverages the memory domain support
in ARM processors to create multiple sandboxes. Memory accesses
by the untrusted module (including read, write, and execution) are
strictly confined by the hardware, and instructions running inside
the sandbox execute at the same speed as those outside it. ARM-
lock imposes virtually no structural constraints on untrusted mod-
ules. For example, they can use self-modifying code, receive ex-
ceptions, and make system calls. Moreover, system calls can be
interposed by ARMlock to enforce the policies set by the host. We
have implemented a prototype of ARMlock for Linux that supports
the popular ARMv6 and ARMv7 sub-architecture. Our security
assessment and performance measurement show that ARMlock is
practical, effective, and efficient.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols, Information flow controls

Keywords
SFI; ARMlock; Fault Isolation; DACR

∗The bulk of this work was completed when the first two authors
were visiting Florida State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660344 .

1. INTRODUCTION
Software fault isolation (SFI [43]) is a mechanism to effectively

isolate untrusted modules in a host application. It creates a logi-
cally separated area called sandbox, or fault domain, in the host’s
address space, and strictly confines the untrusted module into this
area so that it cannot directly access other domains’ memory or
execute their instructions (a domain is either the host or a sand-
box). Data could only be exchanged via explicit cross-domain com-
munications in a fashion similar to Remote Procedure Call [28].
SFI is particularly useful to isolate untrusted code such as third-
party browser plugins downloaded from Internet, or benign code
that handles untrusted and potentially malicious inputs. For exam-
ple, many popular open-source libraries that have been embedded
in hundreds of thousands of programs are found to contain vul-
nerabilities that may be exploited to compromise their host appli-
cations, such as libpng (CVE-2012-5470, CVE-2012-3425, etc.),
libtiff (CVE-2013-4244, CVE-2013-4243, etc.), gzip (CVE-2012-
1461, CVE-2012-1460, etc.), and many others [25]. By isolating
these modules in separate domains, SFI can confine the damages
and thus protect the host application and the operating system.

Since its introduction [43], there has been a long stream of re-
search to improve or apply SFI to protect low-level software se-
curity [8, 9, 20, 21, 23, 33, 43, 46, 47]. For example, Native
Client (NaCl) relies on SFI to safely run untrusted native plugins
in a web browser, bringing performance and safety to browser plu-
gins [33, 46]. Many of these systems focus on the x86 architecture,
the most prevalent CPU architecture until recently. In the past few
years, ARM has become the other dominating CPU architecture
due to the huge popularity of ARM-based mobile devices. For ex-
ample, Google has activated more than 750 million Android-based
devices by March 2013 [3]. The vast majority of them are pow-
ered by the ARM processor. Moreover, ARM processors are in-
creasingly being deployed in data centers because of the improved
performance and superior power efficiency [4]. However, only a
few systems have been proposed to enable SFI for the ARM ar-
chitecture, including NaCl for ARM [33] and ARMor [49]. Both
systems are based on binary rewriting: NaCl for ARM reserves the
lower 1GB address space of the host application for the untrusted
module, and instruments the module to confine its memory and in-
struction references to this range; ARMor, a “fully-verified” SFI
for ARM, guarantees memory safety and control flow integrity [2]
by inserting guards before potentially dangerous operations. Al-
though it is easy to deploy since no kernel modification is required,
binary rewriting could cause relatively high performance overhead
or undesirable trade-offs (e.g., unchecked memory reads [21]). For
example, ARMor has as high as 2× performance overhead for some
computation-intensive tasks such as the string search.



In this paper, we propose ARMlock, a hardware-based fault iso-
lation system for the ARM architecture. ARMlock leverages an
often-overlooked hardware feature in the commodity ARM proces-
sors called memory domain to efficiently establish multiple sand-
boxes. Specifically, memory in a process can be assigned to one
of the sixteen domains, whose access rights are determined by the
domain access control register (DACR). ARMlock assigns different
domain IDs to the host and the sandboxes, and updates DACR when
entering or leaving a sandbox so that only the currently running
domain is accessible. As such, instruction execution and memory
references by the untrusted module are strictly locked down to its
sandbox by the processor’s memory management hardware. ARM-
lock imposes no limitations on the instructions that could be exe-
cuted by an untrusted module. The untrusted module can also make
its own system calls using the svc instruction. Those system calls
are interposed by ARMlock to enforce the policies set by the host.
Particularly, the host can instruct ARMlock to ignore system calls
from the module or selectively allow a subset of them (e.g., to read
from/write to an existing socket but not to create new ones).

By combining the hardware-based memory isolation and flexible
system call interposition, ARMlock has the following three major
advantages: first, instructions running inside the sandbox virtually
have no performance overhead compared to those running outside
it. ARM processors always have memory domain enabled. Run-
ning in a different domain does not affect the performance. Second,
the host application and its untrusted modules usually are tightly
coupled. Efficient domain switch is of vital importance for any
SFI solution. Our experiment shows that ARMlock can perform
more than 903,000 domain switches each second, or 1.1µs per do-
main switch, even on the low-end ARM processor of Raspberry
Pi [29]. Third, by not restricting instruction layout or structure [21,
33, 46], ARMlock can readily support advanced features such as
self-modifying code, just-in-time compiling (JIT), and exception
delivery. Those features are difficult or even impossible to support
in existing systems, but are useful nevertheless, for example, to iso-
late the JavaScript engine that uses JIT to compile frequently-used
JavaScript code into native instructions.

Like any hardware-supported fault isolation systems, ARMlock
requires certain kernel-level support to operate on the privileged
hardware. To facilitate its deployment, ARMlock is designed as a
kernel module (along with a user library) that can be loaded into
the kernel on-demand. We have built a prototype of ARMlock for
Linux. Its kernel module has less than 500 lines of source code.
The main Linux kernel remains unchanged except for five lines of
incompatible code we adjusted during our prototyping. As such,
our prototype’s addition to the trusted computing base is negligi-
ble. Our experiments show that ARMlock can effectively isolate
vulnerable software components, and it’s highly efficient with min-
imal performance overhead for the sandboxed code and fast domain
switches.

The rest of this paper is organized as the following: we first de-
scribe the design and implementation of ARMlock in Section 2 and
Section 3, then evaluate the system performance and effectiveness
in Section 4. We discuss limitations and possible improvements in
Section 5 and the related work in Section 6. Finally, we conclude
the paper in Section 7.

2. SYSTEM DESIGN

2.1 Goals and Assumptions
ARMlock is a hardware-based fault isolation scheme for the ARM

architecture. It is designed to securely isolate untrusted modules
from the host application so that they can safely co-exist in a sin-

gle address space. To achieve that, we have three design goals for
ARMlock:

• Strict isolation: ARMlock needs to strictly isolate untrusted mod-
ules into their own domains. Specifically, memory references by
an untrusted module, including read, write, and execution, can
only target memory in the sandbox. Any attempt to escape from
the sandbox should be prevented. Moreover, ARMlock does
not limit instructions of the module, including the system call
instruction. System calls made by the module should be inter-
posed. Commodity OS kernels have a large attack surface that
may impair the system security.

• Performance: our solution should incur negligible performance
overhead when properly applied. Particularly, code running in-
side the sandbox should have no or minimal overhead when com-
pared to that running natively. This prevents us from adopting bi-
nary rewriting because it will lead to constant performance over-
head [9, 33, 49]. Moreover, untrusted modules are often tightly
coupled with its host, and require frequent cross-domain commu-
nications. For example, tcpdump [40] has parsers for hundreds
of network protocols. Many parsers were found to surfer from
memory-based vulnerabilities (CVE-2007-3798, CVE-2005-1267,
CVE-2005-1278, CVE-2005-1280 [25]). By sandboxing those
parsers, we can significantly reduce tcpdump’s attack surface.
However, close interaction between the parsers and other parts
of tcpdump requires ARMlock to minimize the domain switch
overhead. We briefly considered to use page tables to isolate
domains but vetoed it because switching page tables is an ex-
pensive operation as it may affect TLB (Translation Lookaside
Buffer [41]) and user-space cache [38].

• Compatibility: our system should not impose restrictions on un-
trusted modules. Many existing SFI systems mandate memory
layout and/or instruction structure of the modules [9, 21, 33, 46].
Such constraints may undermine its compatibility or harm the
performance. For example, many SFI systems do not support
self-modifying code and exception delivery. Moreover, to im-
prove compatibility, ARMlock should be structured as a load-
able kernel module, and avoid changing the base kernel, if at all
possible.

Threat model: in this work, we assume a threat model similar to
other SFI systems in which the kernel is trusted, and the host is
benign but vulnerable. The goal is to protect the host application
from the compromised or malicious modules by isolating them in
separate domains. The host does not trust its modules, which could
be vulnerable (e.g., protocol parsers in tcpdump) or simply mali-
cious (e.g., browser plugins downloaded from Internet). Security
of the host or the kernel themselves is a non-goal and considered
out-of-scope. Various existing systems can be applied to enhance
their security and be combined with ARMlock to provide defense
in depth [16, 35].

2.2 Overall Design
In the rest of this section, we briefly introduce the background

of ARM’s virtual memory management and then give a high-level
overview of the design of ARMlock, particularly the run-time en-
vironment for the sandbox.

ARMlock leverages the “memory domain” of the page table to
create its sandboxes. 32-bit ARM processors support 2-level page
tables. The first-level page table has 4096 entries, each mapping
1MB of memory for a total of 4GB address space. Each first-level



Type Value Description
No Access 00 No access permitted
Client 01 Permissions defined by page tables
Reserved 10 Reserved
Manager 11 No permissions check

Table 1: ARM domain access control

page table entry includes a 4-bit domain ID used as an index into
the domain access control register (DACR). DACR is a 32-bit priv-
ileged register [1] and is only accessible in the privileged processor
modes. It is divided into 16 two-bit fields, and each of which de-
fines the access right for its associated domain. The four possible
access rights for a domain are No Access, Client, Reserved,
and Manager as shown in Table 1. That is, those fields allow us to
(1) prohibit any access to the mapped memory – No Access, (2)
ignore permission bits in the page table and allow unlimited access
to the related memory – Manager, (3) or let the page table to deter-
mine the access right – Client. Client is the default setting. In
Linux, domain 0, 1, and 2 are reserved for the kernel, user-space,
and device memory, respectively. They all have the access right of
Client. As such, ARMlock for Linux can simultaneously support
13 sandboxes for each process. Few applications require that many
sandboxes, and more can be supported when necessary by adjust-
ing the page table, as long as these sandboxes are not active at the
same time. ARM’s memory domain is particularly suitable for SFI
because changes to DACR are instantly put into effect without af-
fecting the TLB. In Section 5, we discuss how the x86 architecture
might be extended to support the similar feature.

ARMlock allocates a disjoint block of memory for each sandbox
and assigns to it a unique domain ID. ARMlock manages the DACR
register so that only memory of the currently running domain is ac-
cessible. Any attempt to access other domains’ memory will lead to
a hardware domain fault and be trapped. Cross-domain communi-
cations such as function invocation and memory references need to
be converted to remote procedure calls. Figure 1 shows the archi-
tecture of ARMlock. ARMlock has two collaborating components:
a kernel module and a user library. The kernel module operates
on the (privileged) hardware to create and manage domains and
to facilitate inter-domain communication. It extends the kernel’s
system call interface to expose its services to applications. The
user library wraps ARMlock’s services in an easy-to-use API. The
host application uses this library to set up sandboxes and perform
inter-module calls. In ARMlock, untrusted modules are compiled
as position-independent shared libraries so that they can be loaded
at any suitable locations 1. After loading the module into memory,
the host requests the kernel to set up the sandbox for the module by
specifying its base address, length, and domain ID. The kernel then
goes through the host’s page table and updates the domain ID of
the entries associated with the sandbox. At run-time, the host and
the sandbox use the library to execute inter-module calls with the
help of the kernel.

2.3 Fault Domain
Each domain is allocated a block of memory with a unique do-

main ID. ARMlock manages the domain assignment and domain
access control register (DACR) independently for each process: do-
main IDs are assigned in the page table. They are naturally updated
when the page table is switched during context switch, and DACR
is saved and restored in the thread control block during context

1They have to be loaded at addresses that are 1MB-aligned because
only the first-level page table entries contain the domain ID field.

Kernel ARMlock

The Host

Fault Domain

Stub

TargetEntry

Ret

Caller
1

2
3

4
5

6
Ret

Entry

Inter-Domain Transfer
Intra-Domain Transfer

Syscall Interposition

Figure 1: The architecture of ARMlock

switch. As such, each process is free to assign domains and control
their access rights. No overhead will be incurred to processes that
do not use ARMlock. At run-time, ARMlock updates DACR dur-
ing domain switch so that only the currently running domain is ac-
cessible. Specifically, it sets the current domain (and the kernel 2)
to the Client access right and all other domains to No Access.
Any attempt to access other domains will lead to a domain fault
and be trapped by the hardware. The trap is then routed to the host
application, which can respond by destroying the sandbox or ter-
minating the whole process. Note that multithreading is naturally
supported in ARMlock. First, each CPU core has its own DACR
register. The domain access right is thus determined individually
by each core. One core can run in the sandbox and another in the
host application. Second, each thread has its own DACR setting
that is saved in the thread control block. Switching thread will save
the current thread’s DACR and load the next thread’s DACR. If a
thread running in the sandbox preempts another one running in the
host, the former cannot access the host memory as determined by
its DACR.

Data can be legitimately exchanged across domains using the
kernel-assisted memory copy or shared memory. In the former,
the owner of the memory provides an unforgeable token [11] to
the target domain, which then passes the token to the kernel along
with a destination buffer address. The kernel verifies authenticity of
the token and copies the memory on behalf of the target domain if
verified. Specifically, the kernel temporarily makes both domains
accessible in DACR and copies the memory into the destination
buffer (there is no race condition in doing so because DACR is
saved and restored during thread context switch.) After that, DACR
is restored to the original value. In the latter, the memory shared
by those domains bears a third domain ID. This domain is set to
be accessible by both the host and the sandbox in DACR. In both
cases, the host should treat data from a sandbox as untrusted and
careful sanitize it. The application can choose which method to
use for data exchange. Particularly, the shared memory method has
better performance but may require more careful input sanitation.

Untrusted modules are compiled as the position-independent shared
libraries. Function calls inside a domain proceed as usual without
any performance penalty. Inter-module calls (line 2 and 5 in Fig-
ure 1) require help from the kernel because their target function lies
in a different domain and is not directly accessible from the current
domain. To this end, ARMlock installs in each domain an entry
gate and a return gate. Those two gates are the only entry points
into a domain. ARMlock also creates a stub for each imported ex-
ternal function. To make an inter-module call, the caller calls the
stub (line 1 in Figure 1), which saves the current states and loads
the target function address and the parameters into registers before
calling the kernel for help (line 2). The kernel, instead of directly

2The kernel needs to be always available. It is protected from the
user-space by the hardware (not memory domains).



jumping to the target function, dispatches it through the entry gate
(line 3). When the remote function returns (line 4), the entry gate
in the target domain asks the kernel to return back to the original
domain (line 5), which then returns to the caller (line 6). In this
way, the kernel only needs to know the entry and return gates of a
domain but not any of the exported functions. Inter-module calls
involve delicate operations on the program states. The complicity
is handled for the programmers by the user library as described in
Section 3.1.

ARMlock imposes no constraints on the instructions that can be
executed by the untrusted module including system call instruc-
tions. Each sandbox has an associated in-kernel run-time environ-
ment managed by ARMlock to support system call and signal. Sys-
tem call is the interface for applications to request a wide range of
kernel services. For example, recent versions of the Linux kernel
have more than 330 system calls. Most of these system calls are
not used by a particular application (or untrusted module) but re-
main accessible thus unnecessarily exposing a large attack surface.
On the other hand, discreetly selected system calls can be safely
allowed to simplify implementation as well as to improve perfor-
mance. For example, an untrusted module can be allowed to receive
and send data on existing sockets created by the host application,
but not to create new ones. Each domain (including the host) has
its own system call interposition settings. The ARMlock kernel
module swaps this setting during domain switch.

The host and the sandboxed modules can specify their own sig-
nal handlers. ARMlock updates the signal handlers during domain
switches. To deliver a signal, the kernel needs to manipulate the
user-space memory (particularly the stack) and registers. A signal
can only be delivered to the currently active domain because other
domains are inaccessible. ARMlock allows only synchronous sig-
nals (i.e., signals caused directly by the execution of instructions
such as SIGSEGV, the segment fault) to be delivered to a sandbox.
Asynchronous signals currently are not allowed for sandboxes be-
cause the domain may have changed before the signal is delivered.
For example, the alarm function in libc schedules the SIGALRM
signal to be sent to the process in the future. The signal may be de-
livered to an unrelated domain (whichever domain is active at the
time of signal delivery). In ARMlock, asynchronous signals can
only be handled by the host. When running in a sandbox, those
signals will be re-routed to the host for processing.

2.4 A Programming Model for Sandbox: Corou-
tine

To take full advantage of SFI systems (ARMlock included), pro-
grammers need to shift the programming paradigm to which mod-
ules with different privileges, origins, or security requirements are
isolated from each other [45]. Isolating untrusted modules can sig-
nificantly lower the risk of the host application being compromised.
However, cross-domain access is rather unnatural and clumsy. No-
tice that in ARMlock, the stub issues a system call to perform an
inter-module call (line 2 in Figure 1). This system call enters in one
domain (the host) but emerges from another domain (a sandbox).
This structure can naturally support a more intuitive programming
model for sandboxing, namely coroutine, in which a set of routines
can collaborate by voluntarily ceding CPU time to others. Corou-
tines are useful in solving many problems such as state machines,
producer-consumer problems, and generators [6]. ARMlock pro-
vides built-in support for coroutines.

ARMlock introduces two primitives, yield and resume, to sup-
port coroutines. Yield explicitly gives CPU to the collaborating
routine, while resume resumes execution of the previous routine.
Figure 2 contains a simple program to demonstrate how to use

1: procedure consumer(fd)
2: producer(fd)
3: while (i = yield()) , -1 do
4: use(i)
5: end while
6: end procedure
7:
8: procedure producer(fd) /*untrusted, sandboxed*/

9: read_and_decrypt(fd, buf)
10: resume()
11: for p = bu f ; p < end_o f _bu f ; p++ do
12: ch = decode_next(buf, &p)
13: resume(ch)
14: end for
15: return(-1)
16: end procedure

Figure 2: Coroutine example

coroutines in ARMlock. In this example, the host consumes data
generated by the producer, which uses a “complex” algorithm to
parse the untrusted input file. Consumer cedes the CPU time to
producer in line 3, and producer parses the next input item and
returns it to consumer in line 13. The execution continues at line
3 as if yield has returned with the data passed to resume in line
13. With coroutines, the sandboxed code can be expressed in its
natural logic. For example, producer can loop through the input
and simply return each item implicitly using resume. Also, closely
related states can be kept together (e.g., buf, p, and end_of_buf
are all in the sandbox). An advantage of ARMlock is that corou-
tines can be implemented solely in the user library by leveraging
the ARMlock kernel interface. No additional kernel modification
is required to support yield and resume. The implementation de-
tails are described in Section 3.2.

The use of coroutines in ARMlock-protected programs is op-
tional. Programmers can use either coroutines or the traditional
function calls for the sandbox, whichever suits the problem better.
In section 4, we give some examples of using coroutines to simplify
refactoring of some existing applications.

3. IMPLEMENTATION
In this section, we give details about our prototype of ARM-

lock for Linux. The prototype supports the ARMv6 and ARMv7
sub-architectures due to their popularity and the support of mem-
ory domain. These two sub-architectures cover a wide variant of
ARM processors from the low-end ARM11 processors in Rasp-
berry Pi [29] to the powerful Cortex A9 and Cortex A15 processors
that are popular in high-end mobile devices and a potential com-
petitor in data centers [4].

3.1 ARMlock Kernel Module
ARMlock leverages the hardware feature to isolated untrusted

modules, and thus requires the kernel privilege to change important
hardware/software states (e.g., the page table). Our prototype has a
kernel module and a user library that collaborate to provide SFI for
applications. The kernel module has a compact design to avoid sig-
nificant increase to the kernel’s TCB (design goal 3) and to enable
fast domain switch (design goal 2). Our prototype introduces less
than 500 lines of code in the kernel, and the main kernel remains
intact except for two minor changes (in 5 lines) to address incom-
patibility with ARMlock: first, there is a small section of kernel
memory wrongfully set to the user domain (domain 2). Two lines



are changed in the kernel memory configuration table (mem_types
in arch/arm/mm/mmu.c) to correct it. Second, the kernel consid-
ers every domain fault as a kernel exception and panics upon one (a
reasonable design since no other components used memory domain
before.) Three lines are added in arch/arm/mm/fsr-2level.c to
deliver them to the application if they happen in the user mode.

ARMlock’s kernel module is responsible for creating and switch-
ing domains. The host application can specify the settings for a
fault domain, including the memory region and its domain ID, the
address of the entry gate and the return gate, the initial stack (each
domain has its own stack), as well as allowed system calls. Given
those parameters, the kernel creates the sandbox by manipulating
the host’s page table. Specifically, it locates the first-level page
table entries that map the memory of the sandbox, and sets their
memory domain to the provided one. However, the main kernel is
not aware of ARMlock. It might overwrite the domain ID when up-
dating its page table, for example, to swap out and swap in pages.
To address this problem, ARMlock registers a callback to the MMU
notifier (change_pte) so that ARMlock will be notified whenever
those page table entries have been changed. ARMlock can then re-
cover their domain IDs. The host application also needs to provide
its own entry and return gate addresses to the kernel so the untrusted
module can remotely call the host’s functions. Once the sandbox
has been set up, the host issues an ENABLE_ARMlock command
to the kernel that will prevent any further changes to the sandbox.
That is, the sandbox cannot call the kernel to change itself.

The second responsibility of ARMlock’s kernel module is to fa-
cilitate inter-module calls. To this end, it provides two commands,
ARMlock_CALL for inter-module calls, and ARMlock_RET for inter-
module returns. In both cases, ARMlock first modifies DACR to
make the current domain inaccessible and the next domain acces-
sible. It then updates the signal handlers and system call interpo-
sition. Finally, it manipulates the saved application states so that
execution will continue at the next domain when the system call re-
turns. Specifically, the kernel saves the user registers to the kernel
stack (struct pt_regs) when entering the kernel. These saved
registers can be located by ARMlock. To switch domains, ARM-
lock overwrites the saved stack pointer (r13) and program counter
(r15) with those of the next domain. When kernel returns from the
system call, it restores the saved registers and returns to the user-
space. The execution continues at the restored program counter
with the restored stack, and transits to the next domain. From the
application’s point of view, those two system calls enter from one
domain but emerge from the other domain (instead of the original
domain as normal system calls do). This provides the necessary
structure to support coroutines. Moreover, the other registers are
not modified by ARMlock. They can be used to pass parameters for
inter-module calls. It is important for the current domain to clear
unused registers to prevent cross-domain information leakage.

ARMlock’s kernel module only recognizes the entry and return
gates of a domain. It does not need to know any of the exported
functions. Particularly, the ARMlock_CALL command always tran-
sits to the entry gate of the next domain, which further dispatches
the execution to the target function. ARMlock_RET always tran-
sits to the return gate of the caller domain, which subsequently re-
turns to the original caller. As such, the kernel is oblivious of how
function calls are dispatched or returned. The application needs to
maintain adequate states for inter-module calls. For example, the
caller could push the return address (in r14) to the stack and load
the target function address in one of the registers. The details of
inter-domain calls are handled by the user library and are mostly
transparent to the programmers (Section 3.2). The entry and the
return gates are the only two entry points to a domain. This pro-

Code:

call printf@plt
......

GOT:

...
GOT[n]: <addr>

printf@armlock:

IMC call
prepare IMC call

ARMlock:

Dynamic Linking

PLT:

PLT[0]:

...

PLT[n]:
jmp  *GOT[n]
prepare resolver
jmp  PLT[0]

ARMlock

call resolver

1

2

3

Figure 3: ARMlock external function dispatch

vides an effective location to control the exported functions. For
example, the host application can create a list of functions callable
by a sandbox, and check that only these functions are called by the
sandbox at the entry gate. On the other hand, there is no need to
perform access control at the return gate because the return address
is always saved on the caller domain’s own stack and thus cannot
be changed by other domains.

3.1.1 Signal/Exception Handling
Untrusted modules in ARMlock may cause exceptions such as

the divided-by-zero fault and the illegal-instruction fault. Unlike
many SFI systems, ARMlock allows exceptions (or synchronous
signals) to be delivered to the sandbox. Each domain can assign its
own set of signal handlers. When ARMlock changes domains, it
also switches the signal handlers. To this end, ARMlock maintains
a bitmap of interested signals for each domain. During domain
switch, ARMlock restores their handlers to those of the next do-
main. Considering the fact that a signal is a relatively rare event
for most applications, it could reduce the domain-switch latency
if signal handlers are lazily updated, say, right before the signal is
handled. However, this method is more intrusive and requires non-
trivial modifications to the main kernel, an approach avoided by
ARMlock in favor of easier deployment. In ARMlock, only syn-
chronous signals can be delivered to the sandbox. Asynchronous
signals are handled by the host itself. Nevertheless, an asynchronous
signal might happen when the CPU is executing in the sandbox. To
address that, ARMlock registers a signal handler for those events
on behalf of the sandbox. The handler simply forwards the signal
to the host by calling the host’s handler.

The way a signal is handled in ARMlock is also worth mention-
ing. To deliver the signal to a thread, the kernel allocates a sig-
nal frame (struct sigframe) on the thread’s user stack. Signal
frame consists of the user registers (struct pt_regs, used to re-
sume the thread upon signal return) and a piece of the executable
retcode. Retcode is responsible for cleaning up the signal frame
and resuming the interrupted thread through a sigreturn system
call (arch/arm/kernel/signal.c). Because signal handling is
highly kernel-specific, the thread does not know how to clean up
the signal frame by itself and should instead rely on retcode for
this purpose. Retcode is usually synthesized by the kernel, either
on the user stack or in the memory shared by the kernel and the
user-space such as VDSO [42]. In either case, we need to make
sure the synthesized code is executable by the sandbox. In our
prototype, the Linux kernel actually does not use retcode on the



KernelDomain A Domain B

code

call printf
...

stub

save registers
load parameters
make the syscall

return gate

restore registers

return

switch stack etc.
set PC to entry gate
syscall returns

switch stack etc.
set PC to return gate
syscall returns

printf

...

return

arrange parameters
validate & call *r12
make the syscall

entry gate1

8

2

7

3

6

4

5

Figure 4: ARMlock inter-module call

stack because the stack is non-executable (but retcode is created
nevertheless). Instead, it uses a copy of retcode in the kernel
(KERN_SIGRETURN_CODE). The kernel’s memory has a domain ID
of 0 with the access right of Client, thus its access right is de-
termined by the page table. ARMlock sets the page table to make
retcode executed by both the host and the sandbox. Finally, the
kernel dispatches the signal by manipulating the saved user regis-
ters so that execution will continue at the signal handler and “re-
turn” to the correct retcode when the handler returns, similar to
the way ARMlock switches domains.

3.1.2 System Call Interposition
An untrusted module in ARMlock can make its own system calls

for convenience and performance. However, the kernel’s system
call interface is dangerously wide, and less-exercised system calls
are often a source of kernel exploits. It is thus necessary to inter-
cept and regulate system calls by the untrusted module. Our proto-
type relies on the Seccomp-BPF framework [32] in the Linux ker-
nel for system call interposition. Seccomp-BPF is an extension to
Seccomp [31] that was designed to securely run third-party appli-
cations by disallowing all system calls except for read and write of
already-open files. Seccomp-BPF generalizes Seccomp by accept-
ing a BPF program [22] to filter system calls and their parameters.
In ARMlock, the host can assign a Seccomp program for the sand-
box. By default, it disallows all system calls except those for the
ARMlock kernel module. However, the host can permit other sys-
tem calls when necessary. ARMlock delegates the host to configure
system call interposition for the sandbox. The host should exercise
discretion in this task. Particularly, it should not permit any unnec-
essary system calls and pay close attention to the memory-related
system calls such as mprotect, mmap, and brk. Currently, ARM-
lock does not support fork, exec and other related system calls
inside a sandbox. A process can be forked by the host, followed by
re-initialization of the sandbox. This limitation can be lifted should
more intrusive changes to the base kernel were allowed.

At run-time, the kernel needs to change the Seccomp program
during domain switch. In Linux, each task (struct task_struct
in sched.h) has its own program container (struct seccomp_
filter). The container is organized into a tree structure. Specifi-
cally, there is a prev pointer in seccomp_filter that points to the
parent process’s program. When a system call needs to be filtered,
the kernel executes all the programs along this reverse linked list.
In other words, a parent’s program is inherited by the child pro-
cesses. To interpose the sandbox’s system calls, ARMlock creates
a new seccomp_filter structure for the sandbox (it also inherits
the parent’s program). When switching domains, ARMlock only
needs to overwrite the task’s program container with the pointer
to this new container (current->seccomp.filter). Switching
domains will not affect the program of the host’s children because
they inherit the host’s program, not the sandbox’s.

3.2 ARMlock Fault Domain
ARMlock has a kernel module and a user library. The kernel

module is responsible for creating domains and facilitating inter-
module calls, while the user library provides an easy-to-use pro-
gramming interface for applications. In this rest of this section, we
present details of the fault domain, particularly the user library.

In ARMlock, the untrusted module needs to be compiled as a
position-independent shared library (e.g., ELF dynamic shared ob-
ject (DSO) in Linux [7]) so that it can be loaded at a proper location
(1MB aligned). Each module maintains a list of imported and ex-
ported functions. This defines the interface between domains and
only functions in this list can be called by other domains using
inter-module calls. For each imported function, ARMlock synthe-
sizes a stub to facilitate the inter-module call. ARMlock leverages
the structure of position-independent shared libraries to seamlessly
integrate those stubs into a domain. Specifically, the compiler cre-
ates a structure called PLT/GOT [26] for each external function
(e.g., printf) whose address has to be resolved at run-time by the
loader and linker. As shown in Figure 3, PLT is a short sequence
of code that represents printf in the DSO. Calls to printf will
be directed to this PLT entry, which contains an indirect jump to
the instruction address in its associated GOT entry. Initially, the GOT
entry points back to the PLT to prepare and call the dynamic re-
solver. The first call to printf therefore will resolve the address
of printf and update the GOT entry (line 1, 2, and dotted lines
in Figure 3). Subsequent calls will be directly dispatched to the
actual function. ARMlock leverages PLT/GOT by eagerly calling
the resolver to locate the external function, and replacing the GOT
entry with the address of its stub (e.g., printf@armlock, line 3).
Consequently, calls to external functions will be conveniently re-
placed by inter-module calls. In addition, if a call-back function is
passed to a domain (e.g., a compar function to qsort, the quick
sort function), a stub needs to be created in that domain to invoke
the call-back function with inter-module call.

Figure 4 shows the sequence of an inter-module call. ARMlock
creates an entry gate and a return gate for each domain, and syn-
thesizes a stub for every imported function. Calls to an imported
function will be dispatched to its stub (line 1 in Figure 4). The stub
handles the low-level details of inter-module call. It saves the state
of the current domain onto the stack and loads the parameters into
the registers. Particularly, it stores the target function address into
one of the registers (r12 in our prototype). It then makes a system
call to the ARMlock kernel module (line 2). The kernel changes
the active domain by updating the thread states such as DACR,
saved registers, and signal handlers (Section 3.1). It then sets the
saved instruction pointer (r15) to the entry gate of the target do-
main. Therefore, execution will resume in the target domain when
the system call returns (line 3). The entry gate first validates that the
target function (in r12) is exported to the calling domain and calls
it if the check is passed (line 4). Memory-based parameters need



to be copied over with the help of the kernel, if not shared. When
the function returns (line 5), the entry gate makes another system
call to the kernel (line 6) which “returns” to the return gate of the
calling domain (line 7). The return gate subsequently restores the
saved program states and returns to the original call site (line 8).
Therefore, each inter-module call requires two system calls. As
shown in our experiment, these system calls are very light-weight
and close to a null system call (e.g., getpid).

ARMlock’s user library encapsulates and hides the complicity of
inter-module calls. The programmer only needs to provide a list of
imported functions, from which the library will automatically gen-
erate the corresponding stubs. Even though we rely on PLT/GOT
to place those stubs, there is no need to customize the compiler
because it already supports PLT/GOT, a required structure for dy-
namic shared libraries. In our current prototype, the programmer
needs to manually call some library functions to marshal/unmarshal
memory-based parameters. This can be easily automated with the
tools for remote procedure call [28].

In Section 2.4, we re-introduced the coroutine programming para-
digm to support sandboxes. Coroutines can be straight-forwardly
implemented in ARMlock using return gates: yield and resume
save the registers of the current domain on the stack, and then issue
an ARMlock_RET system call to jump to the target domain’s return
gate. The return gate restores the registers of the target domain and
resumes its execution. For example, in Figure 2, consumer first
calls producer to initialize it (line 2). After initialization (line 9),
producer calls resume to save its states to the stack and return to
consumer (line 10). When consumer later yields to producer ask-
ing for more data (line 3), the return gate of producer will restore
previously saved registers and resume execution at line 11.

Compiler optimization may also complicate the implementation
(and debugging) of sandboxes. Particularly, modern compilers sup-
port intrinsic functions, also called builtins, that are implemented
by the compiler and available for use (implicitly) by the user pro-
gram. Note that some intrinsic functions are not inlined in the code,
and could be located in different domains from the code that in-
vokes them. For example, gcc provides built-in functions for di-
vision on the ARM platform if the processor does not have native
division instructions. The compiler may also silently replace some
instruction sequences with a built-in function during optimization
(e.g., the memset intrinsic). However, only a single copy of built-in
functions will be loaded and linked into a process. When an intrin-
sic function is called in a sandbox, it will lead to a domain fault
because the function lies in the host domain. To address that, we
need to load and link to a copy of built-in functions in each domain
or provide our own equivalent implementation.

4. EVALUATION
In this section, we first systematically analyze the security guar-

antee provided by ARMlock to demonstrate its effectiveness, and
then evaluate the performance overhead incurred by ARMlock.

4.1 Security Analysis
Similar to other SFI systems, we assume a threat model where

the kernel, including the ARMlock kernel module, is trusted and
the host application is benign but may contain exploitable vulnera-
bilities. The host needs to safely execute some untrusted modules
such as benign code that handles untrusted inputs or code of a ques-
tionable origin. Therefore, the code in the sandbox could have been
compromised and is potentially malicious. The goal of ARMlock
is to securely and efficiently isolate the untrusted module from the
host. Figure 5 shows the interaction between the components of a

KernelARMlock

Stub

Entry

Ret Ret

Entry

Syscall Interposition
Exceptions

U
ser1

2

3

4

Fault Domain

The Host

Figure 5: Threat model of ARMlock

protected application. We will use this figure to illustrate the at-
tacks against ARMlock and the defenses built into our system.

Direct memory access: since the sandbox is a part of the host’s
address space, an attacker may try to directly access the host mem-
ory (#1 in Figure 5). This attempt will be intercepted by the CPU
as a domain fault because ARMlock sets the host’s memory inac-
cessible when running inside the sandbox. The kernel delivers the
exception to the handler of the sandbox. ARMlock registers a han-
dler for the sandbox that forwards domain fault and other selected
signals to the host. This might be disrupted by the untrusted module
since we assume it can compromise everything inside the sandbox
(it is feasible to secure the handler using techniques similar to the
Chrome sandbox for Linux [12]. We choose to have a simpler at-
tack model.) Even so, the attempt to access the host memory will
be foiled. Some kernel memory may also be accessible to the un-
trusted module such as VDSO [42] used by Linux to speed up some
system calls. This will not pose a new threat to the kernel because
the kernel always assumes applications are untrusted and protects
itself from them.

Inter-domain communication: the attacker may also target the
inter-domain communication, including inter-module calls, cross-
domain memory copy, and shared memory (#2 in Figure 5). First,
the attacker may try to call a dangerous function in the host (e.g.,
system() in libc) or pass malicious parameters to an exported
function. ARMlock maintains a list of the exported functions that
is checked against by the entry gate. As such, only these func-
tions may be called by the untrusted code. They should always
treat parameters from the sandbox as malicious and carefully sani-
tize them. The host risks being compromised should some security
checks be neglected. To mitigate this threat, the programmer could
refine the exported functions for a narrower attack surface, and pro-
vide defense-in-depth by interposing the host’s syscalls [32] or us-
ing a capability-based system [45]. The return gate in the host can-
not be misused by the attacker to manipulate control flows because
the return address is saved on the host’s stack and thus cannot be
changed by other domains. The return value, if used, should also
be sanitized.

Cross-domain memory copy requires the assistance of the ARM-
lock kernel module. The host passes an unforgeable token [11] to
the kernel and only then the sandbox can issue a memory copy
command. Therefore, the source domain has full control over the
cross-domain memory copy. During memory copy, there is a short
window of time in which both the host and the sandbox are ac-
cessible. However, there is no race condition that would allow the
attacker to access the host memory: DACR (domain access con-
trol register) is saved and restored during the context switch in the
thread control blocks. If another thread is scheduled to interrupt



Item Configuration
CPU ARM1176JZF-S 700 MHz
Memory 512MB
OS Raspbian (based on Debian)
Kernel Linux 3.6.11
LMbench version 2
nbench version 2.2.3

Table 2: Configuration of the experiments

the memory copy, DACR will be restored to its value, rendering
the host memory inaccessible. Moreover, each CPU core has its
own independent DACR. A thread running simultaneously on an-
other CPU core cannot access the host memory unless that core’s
DACR legitimately allows it.

The host and the sandbox may also use shared memory to com-
municate. This may be exploited by the attacker, say, through
race conditions. For example, the attacker may modify the shared
memory when it is being accessed by the host if the host is multi-
threaded. To mitigate it, the host should copy data from the shared
memory before processing it. If large blocks of memory are fre-
quently exchanged, ARMlock can be extended to support swapping
the ownership of the shared memory so that only one domain can
access it at a time.

System call interposition and exceptions: ARMlock imposes
no limitations on the instructions of the sandboxed code. It can is-
sue system calls or cause exceptions (#3 and #4 in Figure 5). A
wide open system call interface is detrimental for security because
many system calls are less exercised and have a higher chance to
contain vulnerabilities. In ARMlock, the host defines the allowed
system calls and their parameters for an untrusted module. Simi-
lar to a firewall policy, the host should by default deny all system
calls and only allow necessary ones. For example, our porting of
tcpdump puts its protocol parsers in the sandbox and gives them
access to the open socket. The parsers can read that socket but can-
not create new ones. This minimalist policy helps to avoid many
pitfalls in the system call interposition for whole applications [10].
Moreover, exceptions can be delivered to the sandbox. ARMlock
leverages the existing signal delivery system in the kernel, one of
the most mature features in the kernel. As mentioned earlier, the
forwarding of selected signals to the host may be disrupted by the
untrusted code, a denial-of-service threat. However, such behavior
can be easily detected by ARMlock, for example, by maintaining a
counter of domain faults in the kernel and the host and comparing
them for differences.

Case studies: to demonstrate the effectiveness of ARMlock,
we examine vulnerabilities in some popular programs and show
how ARMlock can help to confine damages. The first program
we examined is gzip. A recent version of gzip (1.2.4) contains a
buffer overflow vulnerability that can be triggered when an input
file name is longer than 1,020 bytes [13]. This bug may be ex-
ploited remotely if gzip is running by a server such as the Apache
web server. To confine this vulnerability, we use ARMlock to iso-
late the functions that handle the untrusted command line input
(in getopt.c). Even though the bug can still be exploited, the
damage is confined to the sandbox and cannot spread to the host
application or the whole system. Functions like getopt can be
easily converted to coroutines because they closely follow the pro-
ducer/consumer model. Moreover, gzip contains several algorithms
to compress/decompress untrusted data. They should also be iso-
lated.

The second program (library) we examined is libpng, the offi-
cial PNG reference library [18]. Despite having been “extensively

tested for over 18 years”, new security vulnerabilities are still being
discovered in the library with 27 CVE reports (the most recent one
was reported in 2012). We can use ARMlock to sandbox the library
together with the zlib it depends on. However, this will lead to
many inter-module calls because libpng has a fairly fine-grained
interface. To address that, we provide a simple wrapper function
around libpng with a higher level interface (e.g., decode this png
file into the buffer we provided), and sandbox libpng along with
the wrapper. Moreover, libpng uses setjmp/longjmp to handle
errors, a feature that can naturally be supported by ARMlock with-
out any special handling.

The last program we examined is tcpdump [40]. The current
version of tcpdump contains 124 protocol parsers. Vulnerabilities
have been reported for multiple protocol parsers in tcpdump such as
BGP, GRE and LDP. These parsers can be easily isolated in ARM-
lock and prevented from compromising the host.

4.2 Performance Evaluation
The performance of ARMlock can be characterized by the do-

main switch latency and the execution speed of code in the sand-
box. Normally, the host and its untrusted modules are tightly cou-
pled and have close interactions that require inter-domain com-
munications. It is therefore critical for ARMlock to keep the do-
main switch latency as low as possible. Because each inter-module
call requires two system calls to ARMlock’s kernel module, this
latency is bounded by twice the time of a null system call (e.g.,
getpid). Moreover, it is ideal for instructions running inside a
sandbox to execute as fast as those outside the sandbox. There is
a trade-off between the domain switch latency and the execution
speed of the sandboxed code in the design of SFI systems. For ex-
ample, SFI systems that rely on binary rewriting may have lower
domain switch latency but constantly suffer from the performance
overhead when running inside the sandbox. The way a program
is organized can also affect its performance. Domain switch has
a (mostly) constant latency, it is beneficial to structure the pro-
gram so that the frequency of domain switches is minimized, for
example, by defining the interface at a higher semantic level. Our
performance evaluation accordingly consists of two sets of experi-
ments: micro-benchmarks that measure the domain switch latency,
and macro-benchmarks that test the performance of sandboxed pro-
grams. Our experiments are based on Raspberry Pi, a popular and
affordable single board computer. It has a low-end ARMv6 proces-
sor and 512MB memory [29]. Table 2 lists the configuration of our
experiment environment.

To measure the domain switch latency, we implemented a sim-
ple inc function in the sandbox which returns its parameter in-
creased by one. We call this function from the host for 10 million
times and measure the elapsed time with the clock libc function.
The result shows that even on this relatively low performance ARM
processor, ARMlock can perform 903,342 inter-module calls every
second. That is, each inter-module call takes about 1.1µs. There-
fore, each ARMlock system call takes about 0.55µs because every
inter-module call consists of two domain switches (thus two system
calls). To compare it with common system calls, we also measured
the latency of getpid 3 and several other system calls of the origi-
nal Linux kernel with LMbench [19]. Figure 6 shows the latency of
these system calls relative to getpid (in log scale). In particular,
an inter-module call in ARMlock takes about 2.6 times of getpid
or the null system call in LMbench.

Our second set of experiments measures the performance over-
head for instructions running inside the sandbox. Specifically, we
3We use syscall (__NR_getpid) to make sure the kernel is en-
tered to avoid the impact of VDSO [42].



  1x

  10x

  100x

  1,000x

  10,000x

AR
M

lock

clock

exec
fork

getpid

null
sig_handle

sig_install

stat

L
a

te
n

c
y
 r

e
la

ti
v
e

 t
o

 g
e

tp
id

 (
in

 l
o

g
s
c
a

le
)

Figure 6: ARMlock domain switch latency relative to that of
getpid

run nbench [24] – a computation-intensive benchmark of CPU,
FPU, and memory system – both inside the sandbox and natively,
and then compared their relative performance. The result is shown
in Figure 7 (marked as internal). It is clear that in ARMlock in-
structions running inside the sandbox is as fast as outside the sand-
box. Notice that this experiment represents the ideal scenario for
ARMlock because the sandboxed code is almost self-contained and
thus cross-domain communication is not frequent. To further mea-
sure the performance under frequent inter-module calls, we mod-
ify two benchmarks in nbench, Fourier and Neural Net, to use
floating-point functions in the host. Both benchmarks rely heavily
on floating-point functions such as pow, sin, and cos. This set-
ting represents almost a worst-case scenario for ARMlock because
of the frequent inter-module calls. In both cases, the performance
drops to about 62% of the native nbench. Moving those floating
point functions back into the sandbox makes the performance al-
most the same as the native nbench. In general, it will benefit per-
formance (sometimes significantly) to move closely related func-
tions into the sandbox together. This observation also applies to
the three programs in our case studies (Section 4.1). None of them
exhibited more than 1% performance overhead. For example, our
modified tcpdump reads packets from an open socket and parses
them in the sandbox. It has virtually no overhead.

5. DISCUSSION
In this section, we discuss issues related to ARMlock and soft-

ware fault isolation in general. We also suggest possible future
work for ARMlock.

Architecture support for fault isolation: ARMlock is a hardware-
based fault isolation for the ARM architecture. It leverages the
memory domain feature in ARM to confine memory access. The
memory domain feature has clear advantage in implementing SFI
over previous hardware features, namely segmentation [9, 46] and
paging [36, 39]. With segmentation, an application can create mul-
tiple segments that each specifies the valid base and length of a
memory region. It can further use an instruction prefix to specify
which data or code segment the instruction refers to. This creates
a number of issues. Particularly, the untrusted code needs to be in-
strumented to prevent it from changing segments and/or jumping
over the segment override prefix to refer to the unintended seg-
ment. Self-modifying code and dynamically-loaded code are also
challenging to support: the system needs to have the capability to
instrument code at run-time. Meanwhile, page-table based sand-
boxes suffer from high domain switch overhead because TLB and
cache may be affected. Likely, it could not support applications
that require frequent inter-module calls well. In contrast, memory
domain in ARM fits better than segmentation and paging. Specifi-

  0%

  20%

  40%

  60%

  80%

  100%

Assignm
ent

Bitfield

FP_em
ulation

Fourier

H
uffm

an

ID
EA

LU
_decom

position

N
eural_net

N
um

eric_sort

String_sort

 R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

Internal
External

Figure 7: Relative performance of nbench in ARMlock

cally, it assigns to each top-level page table a domain ID, an index
into the domain access control register (DACR). This can be ef-
ficiently integrated into the processor implementation: each TLB
entry can be extended to include a domain ID field. When there
is a memory access, the processor uses the domain ID to retrieve
the access right from DACR. This can be handled in parallel to the
memory access. Although memory domain is not available on x86,
we speculate that recent x86 CPUs could be extended to support
it with some minor modifications. Intel introduced a feature called
page attribute table (PAT) in Pentium III to allow the kernel to spec-
ify cacheability of virtual memory [15]. PAT has a similar structure
as memory domain in ARM: a special register (IA32_PAT MSR)
contains eight page attribute fields to specify a memory type such as
uncacheable, write-combined, write-through, write-back,
reserved, etc. A page table entry has three bits (the PAT, PCD, and
PWT bits) that index into this register to determine the cacheability
of its mapped memory. However, attempting to write the reserved
memory type into the IA32_PAT register will trigger a general-
protection fault [15]. To enable the memory domain like support,
we need to allow reserved to be written into IA32_PAT and de-
lay the fault until the memory of this type is accessed. After this
change, we could use a similar design to implement ARMlock on
the x86 architecture.

Software support for fault isolation: Hardware assisted fault
isolation often requires software support at both the kernel and
the user levels. ARMlock’s kernel module is more or less an af-
terthought “patch” to the existing kernel in favor of compatibility.
A cleaner design could introduce domains into the kernel’s process
management. A domain is a group of resources (similar to the name
space in Linux but at a lower level). Each domain should have its
own memory, system call table, open file table, signal delivery etc.
A master and slave relation can also be established among domains.
A master domain can control a slave domain’s resource allocation
and override its system call table. The kernel may also provide
a hook for SFI to customize domain switch. Without doubt, this
cleaner design requires more intrusive and extensive changes to the
kernel and may not be practical.

A SFI system should facilitate the adoption of its programming
paradigm. ARMlock leverages the PLT/GOT structure to shield the
programmer from the details of inter-module calls. Inevitably, the
programmer still needs to refactor the application into domains, or
compartments [45]. This task can be aided with software develop-
ment tools to suggest source code partitioning and wrap remote
calls in RPC. Moreover, the system should provide common li-
braries ported to the sandbox. Domain switch is a waste of CPU
time because it does not perform useful computation. Porting these
libraries to the sandbox may significantly reduce the overhead (Sec-
tion 4). Projects such as NaCl have ported many libraries to their



sandbox and may be reused by other SFI systems. In addition, the
dynamic loader and linker could be made SFI-aware so that the bi-
nary of these libraries can be shared by all the sandboxes in the
system to reduce the memory footprint.

Many sub-architectures of ARM: unlike the stable x86 archi-
tecture, the ARM architecture has a large number of slightly in-
compatible sub-architectures each with different features, power
consumption, and performance. Some of them might not support
memory domain required by ARMlock. Moreover, the ARM ar-
chitecture has two profiles. Profile A targets full-fledged appli-
cations with virtual memory support; profile M is designed for
low-performance and lower-power embedded devices which do not
need paging. In addition, recent extensions in high-end ARM pro-
cessors add a new page table format, i.e., the long format. This
format removes the memory domain support despite the fact that
there are enough unused bits to accommodate a domain ID. How-
ever, these processors are backward compatible with ARMlock be-
cause memory domain is still supported by the short page-table for-
mat. In the case that the short format is also deprecated, ARMlock
can switch to page table based isolation. Even though ARMlock is
not completely future proof for high-end ARM processors, it will
remain useful and functional for low-to-medium-end processors,
for example, to run untrusted plugins in smart devices (e.g., smart
watch) or Internet of Things.

Kernel-level Sandbox: ARMlock is a user-level sandbox. It
relies on memory domain for isolation. Memory domain is also
available in the kernel space. It requires the following changes
for ARMlock to become a kernel-level sandbox. First, the code
running in the sandbox, even though confined, still has the kernel-
level privilege. It is thus imperative to control the instructions of
untrusted modules. For example, they should not be allowed to
change DACR or even disable paging. This consequently will limit
the support of self-modifying code or JIT (those features probably
are not as useful for a kernel-level sandbox anyway). We can de-
sign a verifier to prove that a binary is safe to run in the kernel
sandbox [46]. Second, the domain switch mechanism needs to be
changed as well. ARMlock depends on the kernel to switch do-
mains. The kernel is always accessible in ARMlock. This is not
the case for a kernel-level sandbox since only part of the kernel is
accessible at any time. We need to design a software-based do-
main switch mechanism, potentially with the help of some form of
control-flow integrity [44, 46]. Third, the interrupt handling has
to be adapted so that interrupt handlers are accessible in both the
main kernel and the sandbox. In addition, the verifier should be
applied to those handlers to prevent them from being misused. In-
terrupts happened in the sandbox are rerouted to the main kernel
for processing.

Close-sourced OS support: our prototype targets Linux, ar-
guably the most popular OS for the ARM processors. However,
the design of ARMlock is neutral to the underlying OS. Particu-
larly, it might be possible to adapt ARMlock to the Windows RT
operating system. Close-sourced OSes pose extra challenges: al-
though ARMlock can be implemented as a loadable kernel module
or device driver, there might exist incompatibility in the main ker-
nel such as the exception handling that we adjusted for Linux. To
address this, the kernel could be dynamically patched to resolve
the incompatibility. Different releases of the kernel may require
different patches, leading to higher maintenance efforts.

6. RELATED WORK
SFI is designed to isolate untrusted modules in dedicated sand-

boxes to prevent them from accessing other domains’ memory and
escaping from the confinement. To this end, SFI systems often

statically or dynamically rewrite the untrusted code to insert inline
reference monitors to control the memory accessible. However,
because memory reads are usually far more frequent than writes,
some of these systems check only memory writes, rendering them
unsuitable for applications such as untrusted native browser plug-
ins (e.g., the attacker could search the browser memory for bank
accounts.) The initial SFI system [43] and PittSFIeld [21] reserve
dedicated register(s) for the generated inline monitors. This ap-
proach has its limitation on the 32-bit x86 architecture due to its
very limited number of general registers. In contrast, NaCl for
x86 [46] and VX32 [9] leverage the hardware segmentation of
x86 to confine memory accesses (segmentation has mostly been
removed from the 64-bit x86 architecture.) ARM does not have
the similar segmentation support. ARMlock instead leverages the
memory domain feature to sandbox both memory read and write.
Binary rewriting based SFI inserts inline reference monitors to con-
fine memory accesses. It is important to prevent these monitors
from being bypassed by the untrusted code. This requires some
level of control flow integrity [2] so that the untrusted code cannot
jump over the monitor to execute unconfined memory access in-
structions. To this end, PittSFIeld and NaCl [33, 46] implement a
chunk-based (coarse-grained) control flow integrity. A chunk con-
tains the monitor and its related memory access instructions. Con-
trol transfer instructions can only target the beginning of a code
chunk. As such, those monitors cannot be bypassed. VX32 is based
on the dynamic binary translation and has a different strategy: it in-
tercepts the real jump target at run-time and forbid any attempt to
bypass the monitors. ARMlock does not need to ensure control
flow integrity of the sandboxed code because the processor guar-
antees that it cannot access memory outside its domain. In fact,
ARMlock imposes no constraints on the untrusted module. For
example, the module can use self-modifying code or just-in-time
compiling if necessary.

ARMor [49] and NaCl for ARM [33] are two closely-related sys-
tems. ARMor is a recent system to provide SFI for ARM applica-
tions. It leverages Diablo [27], a link time binary rewriting frame-
work, to insert inline monitors into the untrusted binary. A moni-
tor needs to be inserted for each memory access and control trans-
fer instruction. It thus has a high performance overhead (almost
2x slow-down for computation-intensive tasks). Even though its
performance could be optimized [48], ARMlock has much smaller
performance overhead, particularly for the sandboxed code. NaCl
for ARM [33] uses a customized compiler to mask out high bits of
memory addresses and jump targets so that the accessible memory
is limited to the lower 1GB. This limits the application of NaCl
for ARM to a single sandbox with a fixed address space. Our sys-
tem does not have such limitation and can also support advanced
features such as JIT. Another closely related system is TLR [30],
which leverages ARM TrustZone to build a trusted language run-
time for mobile applications. TLR can significantly reduce the
TCB of an open-source .NET implementation. Compared to TLR,
ARMlock is a generic SFI system based on the light-weight mem-
ory domain support in ARM. Moreover, TrustZone provides a se-
cure world in addition to a normal world. It’s a better fit to isolate
different applications (as demonstrated in the TLR system [30]) or
OSes than to isolate modules in an application. For example, it
might be difficult for TrustZone to support signals.

Since its introduction [43], SFI has been adopted by many sys-
tems for different purposes. Robusta [37] uses SFI to isolate native
code of the Java virtual machine so that vulnerabilities in the na-
tive code cannot compromise the Java VM or the system. Program
Shepherding [17] relies on dynamic binary translation to moni-
tor control flow transfers at run-time and enforce security policies.



There is also a long stream of research to use SFI or similar tech-
nologies to secure device drivers. For example, VINO [34], SFI-
Minix [14], BGI [5], XFI [8] and LXFI [20] leverage SFI to isolate
kernel extensions (or device drivers) from the main kernel. ARM-
lock is a fault isolation system for user-space applications. Cur-
rently, it cannot be used to isolate kernel mode code yet. We leave
it as a future work to extend our system for this purpose.

At last, ARMlock leverages a feature in the page table to split
the address space into several domains. Page table has often been
used for security purposes. For example, Nooks [39] maintains a
copy of kernel page table for device drivers which only grants read
access to the kernel memory so that misbehaving device drivers
cannot directly change kernel data. SIM [36] protects the active
in-VM monitor from the untrusted kernel in a separated address
space enforced by the hypervisor. HyperLock [44] is a system that
isolates the KVM hypervisor from the host kernel. It allocates a
separate page table for KVM that can only be changed by KVM
via explicit requests. A compromised KVM thus cannot modify
the host OS memory or corrupt the whole system. ARMlock does
not use separate page tables for untrusted modules. It instead relies
on a more efficient hardware feature.

7. SUMMARY
In this paper, we have presented the design and implementation

of ARMlock, a hardware-based fault isolation system for the ARM
architecture. ARMlock uniquely leverages the memory domain
feature in the commodity ARM processors to create multiple sand-
boxes for untrusted modules. We have implemented a prototype of
ARMlock on Linux for the ARMv6 and ARMv7 sub-architectures.
Our evaluation shows that the isolation provided by ARMlock is
strong and efficient. For example, ARMlock can effectively isolate
both memory write and memory read, and code running inside a
sandbox executes as fast as that outside it. Moreover, ARMlock
supports advanced features that many other SFI systems cannot or
have difficult to support, such as self-modifying code, just-in-time
compiling, and exception delivery.

Acknowledgements We would like to thank the anonymous re-
viewers for their comments that greatly helped to improve the pre-
sentation of this paper. This work was supported in part by the First
Year Assistant Professor award of Florida State University. The
first author of this paper was partially supported by the National
Science Foundation of China under Grant No.61340031. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the FSU and NSFC.

8. REFERENCES
[1] Domain Access Control Register.
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0434b/CIHBCBFE.html.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations, and
Applications. In Proceedings of the 12th ACM Conference on
Computer and Communications Security, November 2005.

[3] Update from the CEO. http://googleblog.blogspot.
co.uk/2013/03/update-from-ceo.html.

[4] Calxeda. http://www.calxeda.com/.
[5] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,

A. Donnelly, P. Barham, and R. Black. Fast Byte-Granularity
Software Fault Isolation. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles, 2009.

[6] M. E. Conway. Design of a Separable Transition-Diagram
Compiler. In Communications of the ACM, 1963.

[7] Linux Foundation Referenced Specification.
http://refspecs.linuxbase.org/.

[8] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu,
and G. C. Necula. XFI: Software Guards for System Address
Spaces. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, November
2006.

[9] B. Ford and R. Cox. Vx32: Lightweight User-level
Sandboxing on the x86. In Proceedings of 2008 USENIX
Annual Technical Conference, June 2008.

[10] T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In
Proceedings of the 20th Annual Network and Distributed
Systems Security Symposium, February 2003.

[11] W. K. Giloi and P. Behr. An IPC Protocol and its Hardware
Realization for a High-speed Distributed Multicomputer
System. In Proceedings of the 8th annual symposium on
Computer Architecture, 1981.

[12] Linux and Chrome OS Sandboxing. https://code.
google.com/p/chromium/wiki/LinuxSandboxing.

[13] gzip. The gzip home page. http://www.gzip.org/.
[14] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.

Tanenbaum. Fault Isolation for Device Drivers. In
Proceedings of the 39th IEEE/IFIP International Conference
on Dependable Systems and Networks, 2009.

[15] Intel. Intel 64 and IA-32 Architectures Software Developerś
Manual Volume 3: System Programming Guide, Part 1 and
Part 2, 2010.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks with Instruction-Set Randomization.
In Proceedings of the 10th ACM conference on Computer
and communications security, CCS ’03, October 2003.

[17] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure
Execution Via Program Shepherding. In Proceedings of the
11th USENIX Security Symposium, August 2002.

[18] libpng. libpng home page.
http://libpng.org/pub/png/libpng.html.

[19] LMbench - Tools for Performance Analysis.
http://www.bitmover.com/lmbench/lmbench.html.

[20] Y. Mao, H. Chen, D. Zhou, , X. Wang, N. Zeldovich, and
M. F. Kaashoek. Software fault isolation with API integrity
and multi-principal modules. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, October
2011.

[21] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In Proceedings of the 15th conference on
USENIX Security Symposium, July 2006.

[22] S. McCanne and V. Jacobson. The BSD Packet Filter:A New
Architecture for User-level Packet Capture. In Proceedings
of the 1993 USENIX conference, 1993.

[23] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
RockSalt: Better, Faster, Stronger SFI for the x86. In
Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’12, june 2012.

[24] Linux/Unix nbench.
http://www.tux.org/~mayer/linux/bmark.html.

[25] National Vulnerability Databasel. http://nvd.nist.gov.
[26] PLT and GOT - the Key to Code Sharing and Dynamic

Libraries. https://www.technovelty.org/linux/plt-

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434b/CIHBCBFE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434b/CIHBCBFE.html
http://googleblog.blogspot.co.uk/2013/03/update-from-ceo.html
http://googleblog.blogspot.co.uk/2013/03/update-from-ceo.html
http://www.calxeda.com/
http://refspecs.linuxbase.org/
https://code.google.com/p/chromium/wiki/LinuxSandboxing
https://code.google.com/p/chromium/wiki/LinuxSandboxing
http://www.gzip.org/
http://libpng.org/pub/png/libpng.html
http://www.bitmover.com/lmbench/lmbench.html
http://www.tux.org/~mayer/linux/bmark.html
http://nvd.nist.gov
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html


and-got-the-key-to-code-sharing-and-dynamic-
libraries.html.

[27] L. V. Put, D. Chanet, B. D. Bus, B. D. Sutter, and K. D.
Bosschere. DIABLO: a Reliable, Retargetable and
Extensible Link-time Rewriting Framework. In Proceedings
of the 2005 IEEE International Symposium On Signal
Processing And Information Technolog, 2005.

[28] Remote Procedure Call. http:
//en.wikipedia.org/wiki/Remote_procedure_call.

[29] Raspberry Pi, an ARM/GNU Linux Box for $25.
http://www.raspberrypi.org/.

[30] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM
Trustzone to Build a Trusted Language Runtime for Mobile
Applications. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, March
2014.

[31] seccomp. http://lwn.net/Articles/332974/.
[32] Yet another new approach to seccomp.

http://lwn.net/Articles/475043/.
[33] D. Sehr, R. M. Karl, C. Biffle, V. Khimenko, E. Pasko,

K. Schimpf, B. Yee, and B. Chen. Adapting Software Fault
Isolation to Contemporary CPU Architectures. In
Proceedings of the 19th USENIX Security Symposium,
August 2010.

[34] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
With Disaster: Surviving Misbehaved Kernel Extensions. In
Proceedings of the USENIX 2nd Symposium on OS Design
and Implementation, 1996.

[35] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the Effectiveness of Address-Space
Randomization. In Proceedings of the 11th ACM conference
on Computer and communications security, CCS ’04,
October 2004.

[36] M. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure In-VM
Monitoring Using Hardware Virtualization. In Proceedings
of the 16th ACM Conference on Computer and
Communications Security, November 2009.

[37] J. Siefers, G. Tan, and G. Morrisett. Robusta: Taming the
Native Beast of the JVM. In Proceedings of the 17th ACM
Conference on Computer and Communications Security,
2010.

[38] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering Device Drivers. December 2004.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In
Proceedings of the 19th ACM symposium on Operating
Systems Principles, October 2003.

[40] Tcpdump/Libpcap. http://www.tcpdump.org.
[41] Translation Lookaside Buffer. http://en.wikipedia.

org/wiki/Translation_lookaside_buffer.
[42] On vsyscalls and the vDSO.

http://lwn.net/Articles/446528/.
[43] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.

Efficient Software-based Fault Isolation. In Proceedings of
the 14th ACM Symposium On Operating System Principles,
December 1993.

[44] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
Commodity Hosted Hypervisors with HyperLock. In
Proceedings of the 7th ACM SIGOPS EuroSys Conference,
2012.

[45] R. N. Watson and J. Anderson. Capsicum: Practical
Capabilities for UNIX. In Proceedings of the 2010 USENIX
Annual Technical Conference, June 2010.

[46] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm,
S. Okasaka, N. Narula, N. Fullagar, and G. Inc. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code.
In Proceedings of the 30th IEEE Symposium on Security and
Privacy, May 2009.

[47] B. Zeng, G. Tan, and G. Morrisett. Combining Control-flow
Integrity and Static Analysis for Efficient and Validated Data
Sandboxing. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, October
2011.

[48] B. Zeng, G. Tan, and G. Morrisett. Combining Control-Flow
Integrity and Static Analysis for Efficient and Validated Data
Sandboxing. In Proceedings of the 18th ACM Conference on
Computer and Communication Security, 2011.

[49] L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor: Fully
Verified Software Fault Isolation. In Proceedings of the ninth
ACM international conference on Embedded software,
EMSOFT ’11, October 2011.

https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Remote_procedure_call
http://www.raspberrypi.org/
http://lwn.net/Articles/332974/
http://lwn.net/Articles/475043/
http://www.tcpdump.org
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://lwn.net/Articles/446528/

	Introduction
	System Design
	Goals and Assumptions
	Overall Design
	Fault Domain
	A Programming Model for Sandbox: Coroutine

	Implementation
	ARMlock Kernel Module
	Signal/Exception Handling
	System Call Interposition

	ARMlock Fault Domain

	Evaluation
	Security Analysis
	Performance Evaluation

	Discussion
	Related Work
	Summary
	References

