
Dissecting Android Malware: Characterization and Evolution

Yajin Zhou

Department of Computer Science

North Carolina State University

yajin zhou@ncsu.edu

Xuxian Jiang

Department of Computer Science

North Carolina State University

jiang@cs.ncsu.edu

Abstract—The popularity and adoption of smartphones has
greatly stimulated the spread of mobile malware, especially on
the popular platforms such as Android. In light of their rapid
growth, there is a pressing need to develop effective solutions.
However, our defense capability is largely constrained by the
limited understanding of these emerging mobile malware and
the lack of timely access to related samples.

In this paper, we focus on the Android platform and
aim to systematize or characterize existing Android malware.
Particularly, with more than one year effort, we have managed
to collect more than 1,200 malware samples that cover the
majority of existing Android malware families, ranging from
their debut in August 2010 to recent ones in October 2011.
In addition, we systematically characterize them from various
aspects, including their installation methods, activation mech-
anisms as well as the nature of carried malicious payloads.
The characterization and a subsequent evolution-based study
of representative families reveal that they are evolving rapidly
to circumvent the detection from existing mobile anti-virus
software. Based on the evaluation with four representative
mobile security software, our experiments show that the best
case detects 79.6% of them while the worst case detects only
20.2% in our dataset. These results clearly call for the need to
better develop next-generation anti-mobile-malware solutions.

Keywords-Android malware; smartphone security

I. INTRODUCTION

In recent years, there is an explosive growth in smartphone

sales and adoption. According to CNN [1], smartphone

shipments have tripled in the past three years (from 40

million to about 120 million). Unfortunately, the increasing

adoption of smartphones comes with the growing prevalence

of mobile malware. As the most popular mobile platform,

Google’s Android overtook others (e.g., Symbian) to become

the top mobile malware platform. It has been highlighted

[2] that “among all mobile malware, the share of Android-

based malware is higher than 46% and still growing rapidly.”

Another recent report also alerts that there is “400 percent

increase in Android-based malware since summer 2010” [3].

Given the rampant growth of Android malware, there is a

pressing need to effectively mitigate or defend against them.

However, without an insightful understanding of them, it is

hard to imagine that an effective mitigation solution can be

practically developed. To make matters worse, the research

community at large is still constrained by the lack of a

comprehensive mobile malware dataset to start with.

The goals and contributions of this paper are three-

fold. First, we fulfil the need by presenting the first large

collection of 1260 Android malware samples1 in 49 different

malware families, which covers the majority of existing

Android malware, ranging from their debut in August 2010

to recent ones in October 2011. The dataset is accumulated

from more than one year effort in collecting related malware

samples, including manual or automated crawling from

a variety of Android Markets. To better mitigate mobile

malware threats, we will release the entire dataset to the

research community at http://malgenomeproject.org/.2

Second, based on the collected malware samples, we

perform a timeline analysis of their discovery and thoroughly

characterize them based on their detailed behavior break-

down, including the installation, activation, and payloads.

The timeline analysis is instrumental to revealing major

outbreaks of certain Android malware in the wild while the

detailed breakdown and characterization of existing Android

malware is helpful to better understand them and shed light

on possible defenses.

Specifically, in our 1260 malware samples, we find that

1083 of them (or 86.0%) are repackaged versions of legiti-

mate applications with malicious payloads, which indicates

the policing need of detecting repackaged applications in the

current Android Markets. Also, we observe that more recent

Android malware families are adopting update attacks and

drive-by downloads to infect users, which are more stealthy

and difficult to detect. Further, when analyzing the carried

payloads, we notice a number of alarming statistics: (1)

Around one third (36.7%) of the collected malware samples

leverage root-level exploits to fully compromise the Android

security, posing the highest level of threats to users’ security

and privacy; (2) More than 90% turn the compromised

phones into a botnet controlled through network or short

messages. (3) Among the 49 malware families, 28 of them

(with 571 or 45.3% samples) have the built-in support of

sending out background short messages (to premium-rate

numbers) or making phone calls without user awareness. (4)

1In this study, we consider the samples with different SHA1 values are
distinct.

2To prevent our dataset from being misused, we may require verifying
user identity or request necessary justification before the dataset can be
downloaded. Please visit the project website for detailed information.

http://malgenomeproject.org/

Last but not least, 27 malware families (with 644 or 51.1%

samples) are harvesting user’s information, including user

accounts and short messages stored on the phones.

Third, we perform an evolution-based study of repre-

sentative Android malware, which shows that they are

rapidly evolving and existing anti-malware solutions are

seriously lagging behind. For example, it is not uncom-

mon for Android malware to have encrypted root ex-

ploits or obfuscated command and control (C&C) servers.

The adoption of various sophisticated techniques greatly

raises the bar for their detection. In fact, to evaluate the

effectiveness of existing mobile anti-virus software, we

tested our dataset with four representative ones, i.e., AVG

Antivirus Free, Lookout Security & Antivirus, Norton

Mobile Security Lite, and Trend Micro Mobile Security

Personal Edition, all downloaded from the official Android

Market (in the first week of November, 2011). Sadly, wile

the best case was able to detect 1, 003 (or 79.6%) samples

in our dataset, the worst case can only detect 254 (20.2%)

samples. Furthermore, our analysis shows that malware

authors are quickly learning from each other to create hybrid

threats. For example, one recent Android malware, i.e.,

AnserverBot [4] (reported in September 2011), is clearly

inspired from Plankton [5] (reported in June 2011) to have

the dynamic capability of fetching and executing payload at

runtime, posing significant challenges for the development

of next-generation anti-mobile-malware solutions.

The rest of this paper is organized as follows: Section II

presents a timeline analysis of existing Android malware.

Section III characterizes our samples and shows a detailed

breakdown of their infection behavior. After that, Section IV

presents an evolution study of representative Android mal-

ware and Section V shows the detection results with four

representative mobile anti-virus software. Section VI dis-

cusses possible ways for future improvement, followed by a

survey of related work in Section VII. Lastly, we summarize

our paper in Section VIII.

II. MALWARE TIMELINE

In Table I, we show the list of 49 Android malware

families in our dataset along with the time when each

particular malware family is discovered. We obtain the list

by carefully examining the related security announcements,

threat reports, and blog contents from existing mobile anti-

virus companies and active researchers [6]–[12] as exhaus-

tively as possible and diligently requesting malware samples

from them or actively crawling from existing official and al-

ternative Android Markets. As of this writing, our collection

is believed to reflect the state of the art of Android malware.

Specifically, if we take a look at the Android malware history

[13] from the very first Android malware FakePlayer in

August 2010 to recent ones in the end of October 2011, it

spans slightly more than one year with around 52 Android

malware families reported. Our dataset has 1260 samples

Table I
THE TIMELINE OF 49 ANDROID MALWARE IN OUR COLLECTION (O† :

OFFICIAL ANDROID MARKET; A‡ : ALTERNATIVE ANDROID MARKETS)

Malware Samples
Markets Discovered

MonthO† A‡

FakePlayer 6
√

2010-08

GPSSMSSpy 6
√

2010-08

TapSnake 2
√

2010-08

SMSReplicator 1
√

2010-11

Geinimi 69
√

2010-12

ADRD 22
√

2011-02

Pjapps 58
√

2011-02

BgServ 9
√

2011-03

DroidDream 16
√ √

2011-03

Walkinwat 1
√

2011-03

zHash 11
√ √

2011-03

DroidDreamLight 46
√ √

2011-05

Endofday 1
√

2011-05

Zsone 12
√ √

2011-05

BaseBridge 122
√

2011-06

DroidKungFu1 34
√

2011-06

GGTracker 1
√

2011-06

jSMSHider 16
√

2011-06

Plankton 11
√

2011-06

YZHC 22
√ √

2011-06

Crusewin 2
√

2011-07

DroidKungFu2 30
√

2011-07

GamblerSMS 1
√

2011-07

GoldDream 47
√

2011-07

HippoSMS 4
√

2011-07

Lovetrap 1
√

2011-07

Nickyspy 2
√

2011-07

SndApps 10
√

2011-07

Zitmo 1
√ √

2011-07

CoinPirate 1
√

2011-08

DogWars 1
√

2011-08

DroidKungFu3 309
√

2011-08

GingerMaster 4
√

2011-08

NickyBot 1
√

2011-08

RogueSPPush 9
√

2011-08

AnserverBot 187
√

2011-09

Asroot 8
√ √

2011-09

DroidCoupon 1
√

2011-09

DroidDeluxe 1
√

2011-09

Gone60 9
√

2011-09

Spitmo 1
√

2011-09

BeanBot 8
√

2011-10

DroidKungFu4 96
√ √

2011-10

DroidKungFuSapp 3
√

2011-10

DroidKungFuUpdate 1
√ √

2011-10

FakeNetflix 1
√

2011-10

Jifake 1
√

2011-10

KMin 52
√

2011-10

RogueLemon 2
√

2011-10

Total 1260 14 44

in 49 different malware families, indicating a very decent

coverage of existing Android malware.

For each malware family, we also report in the table the

number of samples in our collection and differentiate the

sources where the malware was discovered, i.e., from either

the official or alternative Android Markets. To eliminate

possible false positive in our dataset, we run our collection

through existing mobile anti-virus software for confirmation

(Section V). If there is any miss from existing mobile anti-

virus security software, we will manually verify the sample

and confirm it is indeed a malware.

08 09 10 11 12 01 02 03 04 05 06 07 08 09 100

2

4

6

8

10
Th

e
Nu

m
be

r o
f N

ew
 A

nd
ro

id
 M

al
w

ar
e

Fa
m

ili
es

2010 2011

In Android Market
In Both Markets
In Alternative Market

(a) The Monthly Breakdown of New Android Malware Families

08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 110

200

400

600

800

1000

1200

1400

Th
e

Cu
m

ul
at

iv
e

Nu
m

be
r o

f N
ew

 M
al

wa
re

 S
am

pl
es

13 13 13 14 18 23 33 66 66
115

209

403

527

678

1260

DroidKungFu
(including its variants)

AnserverBot
2010 2011

(b) The Cumulative Growth of New Malware Samples in Our Collection

Figure 1. The Android Malware Growth in 2010-2011

To better illustrate the malware growth, we show in Fig-

ures 1(a) and 1(b) the monthly breakdown of new Android

malware families and the cumulative monthly growth of

malware samples in our dataset. Consistent with others [2]

[3], starting summer 2011, the Android malware has indeed

increased dramatically, reflected in the rapid emergence of

new malware families as well as different variants of the

same type. In fact, the number of new Android malware

in July 2011 alone already exceeds the total number in

the whole year of 2010. Figure 1(b) further reveals two

major Android malware outbreaks, including DroidKungFu

(starting June, 2011) and AnserverBot (starting September,

2011). Among these 1260 samples in our collection, 37.5%

of them are related to DroidKungFu [14] and its variants;

14.8% are AnserverBot [4]. Both of them are still actively

evolving to evade the detection from existing anti-virus

software – a subject we will dive into in Section IV.

III. MALWARE CHARACTERIZATION

In this section, we present a systematic characterization

of existing Android malware, ranging from their installation,

activation, to the carried malicious payloads.

A. Malware Installation

By manually analyzing malware samples in our collection,

we categorize existing ways Android malware use to install

onto user phones and generalize them into three main so-

cial engineering-based techniques, i.e., repackaging, update

attack, and drive-by download. These techniques are not

mutually exclusive as different variants of the same type may

use different techniques to entice users for downloading.

1) Repackaging Repackaging is one of the most

common techniques malware authors use to piggyback mali-

cious payloads into popular applications (or simply apps). In

essence, malware authors may locate and download popular

apps, disassemble them, enclose malicious payloads, and

then re-assemble and submit the new apps to official and/or

alternative Android Markets. Users could be vulnerable by

being enticed to download and install these infected apps.

To quantify the use of repackaging technique among our

collection, we take the following approach: if a sample

shares the same package name with an app in the official

Android Market, we then download the official app (if

free) and manually compare the difference, which typically

contains the malicious payload added by malware authors. If

the original app is not available, we choose to disassemble

the malware sample and manually determine whether the

malicious payload is a natural part of the main functionality

of the host app. If not, it is considered as repackaged app.

In total, among the 1260 malware samples, 1083 of them

(or 86.0%) are repackaged. By further classifying them

based on each individual family (Table II), we find that

within the total 49 families in our collection, 25 of them

infect users by these repackaged apps while 25 of them

are standalone apps where most of them are designed to

be spyware in the first place. One malware family, i.e.,

GoldDream, utilizes both for its infection.

Among the 1083 repackaged apps, we find that malware

authors have chosen a variety of apps for repackaging,

including paid apps, popular game apps, powerful utility

apps (including security updates), as well as porn-related

apps. For instance, one AnserverBot malware sample (SHA1:

ef140ab1ad04bd9e52c8c5f2fb6440f3a9ebe8ea) repackaged

a paid app com.camelgames.mxmotor available on the offi-

cial Android Market. Another BgServ [15] malware sam-

ple (SHA1: bc2dedad0507a916604f86167a9fa306939e2080)

repackaged the security tool released by Google to remove

DroidDream from infected phones.

Also, possibly due to the attempt to hide piggy-

backed malicious payloads, malware authors tend to use

the class-file names which look legitimate and benign.

For example, AnserverBot malware uses a package name

com.sec.android.provider.drm for its payload, which

looks like a module that provides legitimate DRM func-

tionality. The first version of DroidKungFu chooses to use

com.google.ssearch to disguise as the Google search mod-

ule and its follow-up versions use com.google.update to

pretend to be an official Google update.

It is interesting to note that one malware family –

jSMSHider – uses a publicly available private key (serial

number: b3998086d056cffa) that is distributed in the An-

droid Open Source Project (AOSP). The current Android

security model allows the apps signed with the same plat-

form key of the phone firmware to request the permissions

Table II
AN OVERVIEW OF EXISTING ANDROID MALWARE (PART I: INSTALLATION AND ACTIVATION)

Installation Activation

Repackaging Update
Drive-by

Download
Standalone BOOT SMS NET CALL USB PKG BATT SYS MAIN

ADRD
√ √ √ √

AnserverBot
√ √ √ √ √ √ √ √

Asroot
√

BaseBridge
√ √ √ √ √ √ √

BeanBot
√ √ √

BgServ
√ √ √ √

CoinPirate
√ √ √

Crusewin
√ √ √

DogWars
√

DroidCoupon
√ √ √ √ √

DroidDeluxe
√

DroidDream
√ √

DroidDreamLight
√ √ √

DroidKungFu1
√ √ √ √

DroidKungFu2
√ √ √ √

DroidKungFu3
√ √ √ √

DroidKungFu4
√ √ √ √

DroidKungFuSapp
√ √ √ √

DroidKungFuUpdate
√ √

Endofday
√ √ √

FakeNetflix
√

FakePlayer
√

GamblerSMS
√ √

Geinimi
√ √ √

GGTracker
√ √ √ √ √

GingerMaster
√ √

GoldDream
√ √ √ √ √

Gone60
√

GPSSMSSpy
√ √

HippoSMS
√ √ √ √

Jifake
√ √

jSMSHider
√ √ √

KMin
√ √

Lovetrap
√ √ √

NickyBot
√ √ √

Nickyspy
√ √

Pjapps
√ √ √ √

Plankton
√ √

RogueLemon
√ √

RogueSPPush
√ √

SMSReplicator
√ √

SndApps
√ √

Spitmo
√ √ √ √

TapSnake
√ √

Walkinwat
√

YZHC
√ √

zHash
√ √

Zitmo
√ √ √

Zsone
√ √ √

number of families 25 4 4 25 29 21 4 6 1 2 8 8 5

number of samples 1083 85 4 177 1050 398 288 112 187 17 725 782 56

which are otherwise not available to normal third-party apps.

One such permission includes the installation of additional

apps without user intervention. Unfortunately, a few (ear-

lier) popular custom firmware images were signed by the

default key distributed in AOSP. As a result, the jSMSHider-

infected apps may obtain privileged permissions to perform

dangerous operations without user’s awareness.

2) Update Attack The first technique typically piggy-

backs the entire malicious payloads into host apps, which

could potentially expose their presence. The second tech-

nique makes it difficult for detection. Specifically, it may still

repackage popular apps. But instead of enclosing the payload

as a whole, it only includes an update component that

will fetch or download the malicious payloads at runtime.

As a result, a static scanning of host apps may fail to

capture the malicious payloads. In our dataset, there are four

malware families, i.e., BaseBridge, DroidKungFuUpdate,

AnserverBot, and Plankton, that adopt this attack (Table II).

The BaseBridge malware has a number of variants. While

some embed root exploits that allow for silent installation

of additional apps without user intervention, we here focus

on other variants that use the update attacks without root

exploits. Specifically, when a BaseBridge-infected app runs,

it will check whether an update dialogue needs to be

displayed. If yes, by essentially saying that a new version

is available, the user will be offered to install the updated

version (Figure 2(a)). (The new version is actually stored in

the host app as a resource or asset file.) If the user accepts,

an “updated” version with the malicious payload will then

(a) The Update Dialogue (b) Installation of A New Version

Figure 2. An Update Attack from BaseBridge

be installed (Figure 2(b)). Because the malicious payload is

in the “updated” app, not the original app itself, it is more

stealthy than the first technique that directly includes the

entire malicious payload in the first place.

The DroidKungFuUpdate malware is similar to

BaseBridge. But instead of carrying or enclosing the

“updated” version inside the original app, it chooses to

remotely download a new version from network. Moreover,

it takes a stealthy route by notifying the users through

a third-party library [16] that provides the (legitimate)

notification functionality. (Note the functionality is similar

to the automatic notification from the Google’s Cloud to

Device Messaging framework.) In Figure 3, we show the

captured network traffic initiated from the original host app

to update itself. Once downloaded, the “updated” version

turns out to be the DroidKungFu3 malware. As pointed out

in Table I, the DroidKungFuUpdate malware was available

on both official and alternative Android Markets.

The previous two update attacks require user approval to

download and install new versions. The next two malware,

i.e., AnserverBot and Plankton, advance the update attack

by stealthily upgrading certain components in the host apps

not the entire app. As a result, it does not require user

approval. In particular, Plankton directly fetches and runs

a jar file maintained in a remote server while AnserverBot

retrieves a public (encrypted) blog entry, which contains the

actual payloads for update! In Figure 4, we show the actual

network traffic to download AnserverBot payload from the

remote command and control (C&C) server. Apparently,

the stealthy nature of these update attacks poses significant

challenges for their detection (Table VII – Section V).

3) Drive-by Download The third technique applies

the traditional drive-by download attacks to mobile space.

Though they are not directly exploiting mobile browser

vulnerabilities, they are essentially enticing users to down-

load “interesting” or “feature-rich” apps. In our collection,

we have four such malware families, i.e., GGTracker [17],

GET /appfile/acc9772306c1a84abd02e9e7398a2cce/FinanceAccount.apk HTTP/1.1
Host: 219.234.85.214
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Accept-Ranges: bytes
ETag: W/"377865-1315359197000"
Last-Modified: Wed, 07 Sep 2011 01:33:17 GMT
Content-Type: application/vnd.android.package-archive
Content-Length: 377865
Date: Tue, 25 Oct 2011 02:07:45 GMT

PK.........\$?................META-INF/MANIFEST.MF.Y[s...}.....
xNY.@.dW..PD.. r.%.U>...r......N.O’UI.C...,....W.......w./
..../...K....OoP..#../..........".-,..~.S..._.|......o..1..k...
..........]<.Y..,-...,l7zh......%....g..7r......^.BA41.L.......

Figure 3. An Update Attack from DroidKungFuUpdate

 GET /s/blog_8440ab780100t0nf.html HTTP/1.1
 User-Agent: Dalvik/1.2.0 (Linux; U; Android 2.2.1;
 generic Build/MASTER)
 Host: blog.sina.com.cn
 Connection: Keep-Alive

 HTTP/1.1 200 OK
 Server: nginx/0.7.62
 Date: Wed, 21 Sep 2011 01:44:16 GMT
 ...
 v_____:yjEJTTlSvSSVSGRp9NASSSSS<wbr>SSSSSSSSSSSkSSSS7WB5
 rthy<wbr>OV3JeJ4q96sSrc5Os7g6Wsz8<wbr>hJn99P6O6UaRgkSZsu
 ...

Figure 4. An Update Attack from AnserverBot

Jifake [18], Spitmo [19] and ZitMo [20]. The last two are

designed to steal user’s sensitive banking information.

The GGTracker malware starts from its in-app advertise-

ments. In particular, when a user clicks a special advertise-

ment link, it will redirect the user to a malicious website,

which claims to be analyzing the battery usage of user’s

phone and will redirect the user to one fake Android Market

to download an app claimed to improve battery efficiency.

Unfortunately, the downloaded app is not one that focuses

on improving the efficiency of battery, but a malware that

will subscribe to a premium-rate service without user’s

knowledge.

Similarly, the Jifake malware is downloaded when users

are redirected to the malicious website. However, it is not

using in-app advertisements to attract and redirect users.

Instead, it uses a malicious QR code [21], which when

scanned will redirect the user to another URL containing

the Jifake malware. This malware itself is the repackaged

mobile ICQ client, which sends several SMS messages to

a premium-rate number. While QR code-based malware

propagation has been warned earlier [22], this is the first

time that this attack actually occurred in the wild.

The last two Spitmo and ZitMo are ported versions of

nefarious PC malware, i.e., SpyEye and Zeus. They work in

a similar manner: when a user is doing online banking with

a comprised PC, the user will be redirected to download a

particular smartphone app, which is claimed to better protect

online banking activities. However, the downloaded app is

actually a malware, which can collect and send mTANs

or SMS messages to a remote server. These two malware

families rely on the comprised desktop browsers to launch

the attack. Though it may seem hard to infect real users,

the fact that they can steal sensitive bank information raises

serious alerts to users.

4) Others We have so far presented three main social

engineering-based techniques that have been used in existing

Table III
THE (ABBREVIATED) ANDROID EVENTS/ACTIONS OF INTEREST TO EXISTING MALWARE

Abbreviation Events Abbreviation Events Abbreviation Events

BOOT

(Boot Completed)
BOOT COMPLETED

SMS

(SMS/MMS)

SMS RECEIVED

WAP PUSH RECEIVED

NET

(Network)

CONNECTIVITY CHANGE

PICK WIFI WORK

CALL

(Phone Events)

PHONE STATE

NEW OUTGOING CALL

USB

(USB Storage)

UMS CONNECTED

UMS DISCONNECTED

MAIN

(Main Activity)
ACTION MAIN

PKG

(Package)

PACKAGE ADDED

PACKAGE REMOVED

PACKAGE CHANGED

PACKAGE REPLACED

PACKAGE RESTARTED

PACKAGE INSTALL

BATT

(Power/Battery)

ACTION POWER CONNECTED

ACTION POWER DISCONNECTED

BATTERY LOW

BATTERY OKAY

BATTERY CHANGED ACTION

SYS

(System Events)

USER PRESENT

INPUT METHOD CHANGED

SIG STR

SIM FULL

Android malware. Next, we examine the rest samples that

do not fall in the above three categories. In particular,

our dataset has 1083 repackaged apps, which leaves 177

standalone apps. We therefore look into those standalone

apps and organize them into the following four groups.

The first group is considered spyware as claimed by

themselves – they intend to be installed to victim’s phones on

purpose. That probably explains why attackers have no moti-

vations or the need to lure victim for installation. GPSSMSSpy

is an example that listens to SMS-based commands to record

and upload the victim’s current location.

The second group includes those fake apps that masquer-

ade as the legitimate apps but stealthily perform malicious

actions, such as stealing users’ credentials or sending back-

ground SMS messages. FakeNetflix is an example that

steals a user’s Netflix account and password. Note that

it is not a repackaged version of Netflix app but instead

disguises to be the Netflix app with the same user interface.

FakePlayer is another example that masquerades as a movie

player but does not provide the advertised functionality at

all. All it does is to send SMS messages to premium-rate

numbers without user awareness.

The third group contains apps that also intentionally

include malicious functionality (e.g., sending unauthorized

SMS messages or subscribing to some value-added service

automatically). But the difference from the second group

is that they are not fake ones. Instead, they can provide

the functionality they claimed. But unknown to users, they

also include certain malicious functionality. For example,

one RogueSPPush sample is an astrology app. But it will

automatically subscribe to premium-rate services by inten-

tionally hiding confirmation SMS messages.

The last group includes those apps that rely on the root

privilege to function well. However, without asking the user

to grant the root privilege to these apps, they leverage

known root exploits to escape from the built-in security

sandbox. Though these apps may not clearly demonstrate

malicious intents, the fact of using root exploits without

user permission seems cross the line. Examples in this group

include Asroot and DroidDeluxe.

B. Activation

Next, we examine the system-wide Android events of

interest to existing Android malware. By registering for

the related system-wide events, an Android malware can

rely on the built-in support of automated event notification

and callbacks on Android to flexibly trigger or launch its

payloads. For simplicity, we abbreviate some frequently-

used Android events in Table III. For each malware family

in our dataset, we also report related events in Table II.

Among all available system events, BOOT_COMPLETED is

the most interested one to existing Android malware. This

is not surprising as this particular event will be triggered

when the system finishes its booting process – a perfect

timing for malware to kick off its background services.

In our dataset, 29 (with 83.3% of the samples) mal-

ware families listen to this event. For instance, Geinimi

(SHA1: 179e1c69ceaf2a98fdca1817a3f3f1fa28236b13) lis-

tens to this event to bootstrap the background service –

com.geinimi.AdService.

The SMS_RECEIVED comes second with 21 malware fami-

lies interested in it. This is also reasonable as many malware

will be keen in intercepting or responding incoming SMS

messages. As an example, zSone listens to this SMS_RECEIVED

event and intercepts or removes all SMS message from

particular originating numbers such as “10086” and “10010.”

During our analysis, we also find that certain malware

registers for a variety of events. For example, AnserverBot

registers for callbacks from 10 different events while

BaseBridge is interested in 9 different events. The regis-

tration of a large number of events is expected to allow the

malware to reliably or quickly launch the carried payloads.

In addition, we also observe some malware samples

directly hijack the entry activity of the host apps,

which will be triggered when the user clicks the app

icon on the home screen or an intent with action

ACTION_MAIN is received by the app. The hijacking of

the entry activity allows the malware to immediately

bootstrap its service before starting the host app’s

primary activity. For example, DroidDream (SHA1:

fdf6509b4911485b3f4783a72fde5c27aa9548c7) replaces the

original entry activity with its own com.android.root.main

so that it can gain control even before the original

activity com.codingcaveman.SoloTrial.SplashActivity

is launched. Some malware may also hijack

certain UI interaction events (e.g., button clicking).

An example is the zSone malware (SHA1:

00d6e661f90663eeffc10f64441b17079ea6f819) that invokes

its own SMS sending code inside the onClick() function

of the host app.

Table IV
THE LIST OF PLATFORM-LEVEL ROOT EXPLOITS AND THEIR USES IN

EXISTING ANDROID MALWARE

Vulnerable

Program

Root

Exploit

Release

Date
Malware with the Exploit

Linux kernel Asroot [23] 2009/08/16 Asroot

init

(<= 2.2)
Exploid [24] 2010/07/15

DroidDream, zHash

DroidKungFu[1235]

adbd (<= 2.2.1)

zygote(<= 2.2.1)

RATC [25]

Zimperlich [26]

2010/08/21

2011/02/24

DroidDream, BaseBridge

DroidKungFu[1235]

DroidDeluxe

DroidCoupon

ashmem

(<= 2.2.1)

KillingInThe

NameOf [27]
2011/01/06 -

vold

(<= 2.3.3)
GingerBreak [28] 2011/04/21 GingerMaster

libsysutils

(<= 2.3.6)
zergRush [29] 2011/10/10 -

C. Malicious Payloads

As existing Android malware can be largely character-

ized by their carried payloads, we also survey our dataset

and partition the payload functionalities into four different

categories: privilege escalation, remote control, financial

charges, and personal information stealing.

1) Privilege Escalation The Android platform is a

complicated system that consists of not only the Linux

kernel, but also the entire Android framework with more

than 90 open-source libraries included, such as WebKit,

SQLite, and OpenSSL. The complexity naturally introduces

software vulnerabilities that can be potentially exploited

for privilege escalation. In Table IV, we show the list of

known Android platform-level vulnerabilities that can be

exploited for privilege exploitations. Inside the table, we also

show the list of Android malware that actively exploit these

vulnerabilities to facilitate the execution of their payloads.

Overall, there are a small number of platform-level vulner-

abilities that are being actively exploited in the wild. The top

three exploits are exploid, RATC (or RageAgainstTheCage),

and Zimperlich. We point out that if the RATC exploit is

launched within a running app, it is effectively exploiting the

bug in the zygote daemon, not the intended adbd daemon,

thus behavoring as the Zimperlich exploit. Considering the

similar nature of these two vulnerabilities, we use RATC to

represent both of them.

From our analysis, one alarming result is that among 1260

samples in our dataset, 463 of them (36.7%) embed at least

one root exploit (Table V). In terms of the popularity of each

individual exploit, there are 389, 440, 4, and 8 samples that

contain exploid, RATC, GingerBreak, and asroot, respec-

tively. Also, it is not uncommon for a malware to have two

or more root exploits to maximize its chances for successful

exploitations on multiple platform versions. (In our dataset,

there are 378 samples with more than one root exploit.)

A further investigation on how these exploits are actually

used shows that many earlier malware simply copy verbatim

the publicly available root exploits without any modification,

even without removing the original debug output strings

or changing the file names of associated root exploits. For

example, DroidDream contains the exploid file name exactly

the same as the publicly available one. However, things have

been changed recently. For example, DroidKungFu does not

directly embed these root exploits. Instead it first encrypts

these root exploits and then stores them as a resource or asset

file. At runtime, it dynamically uncovers these encrypted

root exploits and then executes them properly, which makes

their detection very challenging. In fact, when the first

version of DroidKungFu was discovered, it has been reported

that no single existing mobile anti-virus software at that time

was able to detect it, which demonstrated the “effectiveness”

of this approach. Moreover, other recent malware such as

DroidCoupon and GingerMaster apparently obfuscate the file

names of the associated root exploits (e.g., by pretending

as picture files with png suffix). We believe these changes

reflect the evolving nature of malware development and the

ongoing arms race for malware defense (Section IV).

2) Remote Control During our analysis to examine the

remote control functionality among the malware payloads,

we are surprised to note that 1, 172 samples (93.0%) turn

the infected phones into bots for remote control. Specifically,

there are 1, 171 samples that use the HTTP-based web traffic

to receive bot commands from their C&C servers.

We also observe that some malware families attempt

to be stealthy by encrypting the URLs of remote C&C

servers as well as their communication with C&C servers.

For example, Pjapps uses its own encoding scheme to

encrypt the C&C server addresses. One of its samples

(SH1: 663e8eb52c7b4a14e2873b1551748587018661b3)

encodes its C&C server mobilemeego91.com into

2maodb3ialke8mdeme3gkos9g1icaofm. DroidKungFu3

employs the standard AES encryption scheme and uses the

key Fuck_sExy-aLl!Pw to hide its C&C servers. Geinimi

similarly applies DES encryption scheme (with the key

0x0102030405060708) to encrypt its communication to the

remote C&C server.

During our study, we also find that most C&C servers

are registered in domains controlled by attackers themselves.

However, we also identify cases where the C&C servers are

hosted in public clouds. For instance, the Plankton spyware

dynamically fetches and runs its payload from a server

hosted on the Amazon cloud. Most recently, attackers are

even turning to public blog servers as their C&C servers.

AnserverBot is one example that uses two popular public

blog services, i.e., Sina and Baidu, as its C&C servers to re-

trieve the latest payloads and new C&C URLs (Section IV).

3) Financial Charge Beside privilege escalation and

remote control, we also look into the motivations behind

malware infection. In particular, we study whether malware

will intentionally cause financial charges to infected users.

One profitable way for attackers is to surreptitiously

subscribe to (attacker-controlled) premium-rate services,

such as by sending SMS messages. On Android, there is

Table V
AN OVERVIEW OF EXISTING ANDROID MALWARE (PART II: MALICIOUS PAYLOADS)

Privilege Escalation Remote Control Financial Charges Personal Information Stealing

Exploid
RATC/

Zimperlich

Ginger

Break
Asroot Encrypted NET SMS

Phone

Call
SMS

Block

SMS
SMS

Phone

Number

User

Account

ADRD
√

AnserverBot
√ √ †

Asroot
√

BaseBridge
√ √ √ √ † √

BeanBot
√ √ √ † √ √

BgServ
√ √ † √ √

CoinPirate
√ √ † √ √

Crusewin
√ √ √ √

DogWars
√

DroidCoupon
√ √

DroidDeluxe
√

DroidDream
√ √ √

DroidDreamLight
√ √

DroidKungFu1
√ √ √ √ √

DroidKungFu2
√ √ √ √ √

DroidKungFu3
√ √ √ √ √

DroidKungFu4
√

DroidKungFu5
√ √ √ √ √

DroidKungFuUpdate

Endofday
√ √ √

FakeNetflix
√

FakePlayer
√ ‡

GamblerSMS
√

Geinimi
√ √ √ † √ √ √

GGTracker
√ ‡ √ √ √

GingerMaster
√ √ √

GoldDream
√ √ √ † √ √

Gone60
√

GPSSMSSpy
√

HippoSMS
√ ‡ √

Jifake
√ ‡

jSMSHider
√ √ † √ √

KMin
√ √ † √

Lovetrap
√ † √

NickyBot
√ √ √

Nickyspy
√ √ √

Pjapps
√ √ † √ √

Plankton
√

RogueLemon
√ √ † √ √

RogueSPPush
√ ‡ √

SMSReplicator
√ √

SndApps
√

Spitmo
√ √ † √ √ √

TapSnake

Walkinwat
√

YZHC
√ √ ‡ √ √

zHash
√

Zitmo
√

Zsone
√ ‡ √

number of families 6 8 1 1 4 27 1 4 28 17 13 15 3

number of samples 389 440 4 8 363 1171 1 246 571 315 138 563 43

a permission-guarded function sendTextMessage that

allows for sending an SMS message in the background

without user’s awareness. We are able to confirm this type of

attacks targeting users in Russia, United States, and China.

The very first Android malware FakePlayer sends SMS

message “798657” to multiple premium-rate numbers in

Russia. GGTracker automatically signs up the infected user

to premium services in US without user’s knowledge. zSone

sends SMS messages to premium-rate numbers in China

without user’s consent. In total, there are 55 samples (4.4%)

falling in 7 different families (tagged with ‡ in Table V) that

send SMS messages to the premium-rate numbers hardcoded

in the infected apps.

Moreover, some malware choose not to hard-code

premium-rate numbers. Instead, they leverage the flexible

remote control to push down the numbers at runtime. In our

dataset, there are 13 such malware families (tagged with †

in Table V). Apparently, these malware families are more

stealthy than earlier ones because the destination number

will not be known by simply analyzing the infected apps.

In our analysis, we also observe that by automatically

subscribing to premium-rate services, these malware families

need to reply to certain SMS messages. This may due to the

second-confirmation policy required in some countries such

INTERNET

READ_PHONE_STATE

ACCESS_NETWORK_STATE

WRITE_EXTERNAL_STORAGE

ACCESS_WIFI_STATE

READ_SMS

RECEIVE_BOOT_COMPLETED

WRITE_SMS

SEND_SMS

RECEIVE_SMS

VIBRATE

ACCESS_COARSE_LOCATION

READ_CONTACTS

ACCESS_FINE_LOCATION

WAKE_LOCK

CALL_PHONE

CHANGE_WIFI_STATE

WRITE_CONTACTS

WRITE_APN_SETTINGS

RESTART_PACKAGES

0 200 400 600 800 1000 1200

1232

1179

1023

847

804

790

688

658

553

499

483

480

457

432

425

424

398

374

349

333

(a) Top 20 Permissions Requested By 1260 Malware Samples

INTERNET

ACCESS_NETWORK_STATE

WRITE_EXTERNAL_STORAGE

READ_PHONE_STATE

VIBRATE

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

WAKE_LOCK

RECEIVE_BOOT_COMPLETED

ACCESS_WIFI_STATE

CALL_PHONE

CAMERA

READ_CONTACTS

GET_TASKS

GET_ACCOUNTS

SET_WALLPAPER

SEND_SMS

WRITE_SETTINGS

CHANGE_WIFI_STATE

RESTART_PACKAGES

0 200 400 600 800 1000 1200

1122

913

488

433

287

285

263

218

137

134

114

73

71

60

54

49

43

39

34

33

(b) Top 20 Permissions Requested by 1260 Top Free (Benign) Apps on
the Offical Android Market

Figure 5. The Comparison of Top 20 Requested Permissions by Malicious and Benign Apps

as China. Specifically, to sign up a premium-rate service, the

user must reply to a confirming SMS message sent from the

service provider to finalize or activate the service subscrip-

tion. To avoid users from being notified, they will take care

of replying to these confirming messages by themselves. As

an example, RogueSPPush will automatically reply “Y” to

such incoming messages in the background; GGTracker will

reply “YES” to one premium number, 99735, to active the

subscribed service. Similarly, to prevent users from knowing

subsequent billing-related messages, they choose to filter

these SMS messages as well. This behavior is present in

a number of malware, including zSone, RogueSPPush, and

GGTracker.

Besides these premium-rate numbers, some malware also

leverage the same functionality by sending SMS messages

to other phone numbers. Though less serious than previous

ones, they still result in certain financial charges especially

when the user does not have an unlimited messaging plan.

For example, DogWars sends SMS messages to all the con-

tacts in the phone without user’s awareness. Other malware

may also make background phone calls. With the same

remote control capability, the destination number can be

provided from a remote C&C server, as shown in Geinimi.

4) Information Collection In addition to the above

payloads, we also find that malware are actively harvesting

various information on the infected phones, including SMS

messages, phone numbers as well as user accounts. In

particular, there are 13 malware families (138 samples) in

our dataset that collect SMS messages, 15 families (563

samples) gather phone numbers, and 3 families (43 samples)

obtain and upload the information about user accounts. For

example, SndApps collects users’ email addresses and sends

them to a remote server. FakeNetflix gathers users’ Netflix

accounts and passwords by providing a fake but seeming

identical Netflix UI.

We consider the collection of users’ SMS messages is

a highly suspicious behavior. The user credential may be

included in SMS messages. For example, both Zitmo (the

Zeus version on Android) and Spitmo (the SpyEpy version

on Android) attempt to intercept SMS verification messages

and then upload them to a remote server. If successful, the

attacker may use them to generate fraudulent transactions

on behalf of infected users.

D. Permission Uses

For Android apps without root exploits, their capabilities

are strictly constrained by the permissions users grant to

them. Therefore, it will be interesting to compare top permis-

sions requested by these malicious apps in the dataset with

top permissions requested by benign ones. To this end, we

have randomly chosen 1260 top free apps downloaded from

the official Android Market in the first week of October,

2011. The results are shown in Figure 5.

Based on the comparison, INTERNET, READ_PHONE_STATE,

ACCESS_NETWORK_STATE, and WRITE_EXTERNAL_STORAGE per-

missions are widely requested in both malicious and benign

apps. The first two are typically needed to allow for the em-

bedded ad libraries to function properly. But malicious apps

clearly tend to request more frequently on the SMS-related

permissions, such as READ_SMS, WRITE_SMS, RECEIVE_SMS,

and SEND_SMS. Specifically, there are 790 samples (62.7%)

in our dataset that request the READ_SMS permission, while

less than 33 benign apps (or 2.6%) request this permission.

These results are consistent with the fact that 28 malware

families in our dataset (or 45.3% of the samples) that have

the SMS-related malicious functionality.

Also, we observe 688 malware samples request the

RECEIVE_BOOT_COMPLETED permission. This number is five

times of that in benign apps (137 samples). This could be

due to the fact that malware is more likely to run back-

ground services without user’s intervention. Note that there

are 398 malware samples requesting CHANGE_WIFI_STATE

permission, which is an order of magnitude higher than that

in benign apps (34 samples). That is mainly because the

Exploid root exploit requires certain hot plug events such as

changing the WIFI state, which is related to this permission.

Finally, we notice that malicious apps tend to request more

permissions than benign ones. In our dataset, the average

number of permissions requested by malicious apps is 11

while the average number requested by benign apps is 4.

Among the top 20 permissions, 9 of them are requested by

malicious apps on average while 3 of them on average are

requested by benign apps.

IV. MALWARE EVOLUTION

As mentioned earlier, since summer of 2011, we have

observed rapid growth of Android malware. In this section,

we dive into representative samples and present a more in-

depth analysis of their evolution. Specifically, we choose

DroidKungFu (including its variants) and AnserverBot for

illustration as they reflect the current trend of Android

malware growth.

A. DroidKungFu

The first version of DroidKungFu (or DroidKungFu1) mal-

ware was detected by our research team [30] in June

2011. It was considered one of the most sophisticated

Android malware at that time. Later on, we further detected

the second version DroidKungFu2 and the third version

DroidKungFu3 in July and August, respectively. The fourth

version DroidKungFu4 was detected by other researchers in

October 2011 [31]. Shortly after that, we also came across

the fifth version DroidKungFuSapp, which is still a new

variant not being detected yet by existing mobile anti-virus

software (Section V). In the meantime, there is another vari-

ant called DroidKungFuUpdate [32] that utilizes the update

attack (Section III). In Table VI, we summarize these six

DroidKungFu variants. In total there are 473 DroidKungFu

malware samples in our dataset.

The emergence of these DroidKungFu variants clearly

demonstrates the current rapid development of Android

malware. In the following, we zoom in various aspects of

DroidKungFu malware.

1) Root Exploits Among these six variants, four of them

contain encrypted root exploits. Some of these encrypted

files are located under the directory “assets”, which look like

normal data files. To the best of our knowledge, DroidKungFu

is the first time we have observed in Android malware to

include encrypted root exploits.

The use of encryption is helpful for DroidKungFu to

evade detection. And different variants tend to use different

encryption keys to better protect themselves. For example,

the key used in DroidKungFu1 is Fuck_sExy-aLl!Pw, which

has been changed to Stak_yExy-eLt!Pw in DroidKungFu4.

It is interesting to notice that in DroidKungFu1, the

file name with the encrypted root exploit is “ratc” – the

acronym of RageAgainstTheCage. In DroidKungFu2 and

DroidKungFu3, this file name with the same root exploit has

been changed to “myicon”, pretending to be an icon file.

2) C&C Servers All DroidKungFu variants have a

payload that communicates with remote C&C servers and

receives the commands from them. Our investigation shows

that the malware keeps changing the ways to store the

C&C server addresses. For example, in DroidKungFu1, the

C&C server is saved in plain-text in a Java class file. In

DroidKungFu2, this C&C server address is moved to a native

program in plaintext. Also, remote C&C servers have been

increased from 1 to 3. In DroidKungFu3, it encrypts the

C&C server addresses in a Java class file. In DroidKungFu4,

it moves the C&C address back to a native program as

DroidKungFu2 but in cipertext. In DroidKungFuSapp, we

observe using a new C&C server and a different home-made

encryption scheme.

3) Shadow Payloads DroidKungFu also carries with

itself an embedded app, which will be stealthily installed

once the root exploit is successfully launched. As a result,

the embedded app will be installed without user’s awareness.

An examination of this embedded app code shows that it is

almost identical to the malicious payload DroidKungFu adds

to the repackaged app. The installation of this embedded app

will ensure that even the repackaged app has been removed,

it can continue to be functional. Moreover, in DroidKungFu1,

the embedded app will show a fake Google Search icon

while in DroidKungFu2, the embedded app is encrypted and

will not display any icon on the phone.

4) Obfuscation, JNI, and Others As briefly mentioned

earlier, DroidKungFu heavily makes use of encryption to hide

its existence. Geinimi is an earlier malware that encrypts

the constant strings to make it hard to analyze. DroidKungFu

instead encrypts not only those constant strings and C&C

servers, but also those native payloads and the embedded

app file. Moreover, it rapidly changes different keys for the

encryption, aggressively obfuscates the class name in the

malicious payload, and exploits JNI interfaces to increase

the difficulty for analysis and detection. For example, both

DroidKungFu2 and DroidKungFu4 uses a native program

(through JNI) to communicate with and fetch bot commands

from remote servers.

The latest version, i.e., DroidKungFuUpdate, employs the

update attack. With its stealthiness, it managed into the

official Android Market for users to download, reflecting

the evolution trend of Android malware to be more stealthy

Table VI
THE OVERVIEW OF SIX DroidKungFu MALWARE FAMILIES

Root Exploits C&C Malicious

Component

Embedded

Apk
Samples

Discovered

MonthExploid RATC Encrypted In Native In Java Encrypted Number

DroidKungFu1
√ √ √ √

1 com.google.ssearch plaintext 34 2011-06

DroidKungFu2
√ √ √ √

3 com.eguan.state none 30 2011-07

DroidKungFu3
√ √ √ √ √

3 com.google.update encrypted 309 2011-08

DroidKungFu4
√ √

3 com.safesys none 96 2011-10

DroidKungFuSapp
√ √ √ √

1 com.mjdc.sapp none 3 2011-10

DroidKungFuUpdate - - - - - - - - none 1 2011-10

in their design and infection.

B. AnserverBot

AnserverBot was discovered in September 2011. This

malware piggybacks on legitimate apps and is being actively

distributed among a few third-party Android Markets in

China. The malware is considered one of the most sophisti-

cated Android malware as it aggressively exploits several

sophisticated techniques to evade detection and analysis,

which has not been seen before. Our full investigation of

this malware took more than one week to complete. After

the detailed analysis [33], we believe this malware evolves

from earlier BaseBridge malware. In the following, we will

highlight key techniques employed by AnserverBot. Our

current dataset has 187 AnserverBot samples.

1) Anti-Analysis Though AnserverBot repackages

existing apps for infection, it aims to protect itself by actively

detecting whether the repackaged app has been tampered

with or not. More specifically, when it runs, it will check

the signature or the integrity of the current (repackaged) app

before unfolding its payloads. This mechanism is in place

to thwart possible reverse engineering efforts.

Moreover, AnserverBot aggressively obfuscates its inter-

nal classes, methods, and fields to make them humanly

unreadable. Also, it intentionally partitions the main payload

into three related apps: one is the host app and the other twos

are embedded apps. The two embedded apps share the same

name com.sec.android.touchScreen.server but with different

functionality. One such app will be installed through the

update attack while the other will be dynamically loaded

without being actually installed (similar to Plankton). The

functionality partitioning and coordination, as well as ag-

gressive obfuscation, make its analysis very challenging.

We have the reason to believe that AnserverBot is inspired

by the dynamic loading mechanism from Plankton. In

particular, the dynamic mechanisms to retrieve and load

remote code is not available in earlier BaseBridge malware.

In other words, it exploits the class loading feature in Dalvik

virtual machine to load and execute the malicious payload

at run time. By employing this dynamic loading behavior,

AnserverBot can greatly protect itself from being detected

by existing anti-virus software (Section V). Moreover, with

such dynamic capability in place, malware authors can

instantly upgrade the payloads while still taking advantage

of current infection base.

2) Security Software Detection Another related self-

protection feature used in AnserverBot is that it can de-

tect the presence of certain mobile anti-virus software.

In particular, it contains the encrypted names of three

mobile anti-virus software, i.e., com.qihoo360.mobilesafe,

com.tencent.qqpimsecure and com.lbe.security, and attempts

to match them with those installed apps on the phone. If

any of the three anti-virus software is detected, AnserverBot

will attempt to stop it by calling the restartPackage method

and displaying a dialog window informing the user that the

particular app is stopped unexpectedly.

3) C&C Servers One interesting aspect of AnserverBot

is its C&C servers. In particular, it supports two types of

C&C servers. The first one is similar to traditional C&C

servers from which to receive the command. The second one

instead is used to upgrade its payload and/or the new address

of the first type C&C server. Surprisingly, the second type

is based on (encrypted) blog contents, which are maintained

by popular blog service providers (i.e., Sina and Baidu). In

other words, AnserverBot connects to the public blog site

to fetch the (encrypted) current C&C server and the new

(encrypted) payload. This functionality can ensure that even

if the first type C&C server is offline, the new C&C server

can still be pushed to the malware through this public blog,

which is still active as of this writing.

V. MALWARE DETECTION

The rapid growth and evolution of recent Android

malware pose significant challenges for their detection.

In this section, we attempt to measure the effectiveness

of existing mobile anti-virus software. To this end, we

choose four representative mobile anti-virus software, i.e.,

AVG Antivirus Free v2.9 (or AVG), Lookout Security &

Antivirus v6.9 (or Lookout), Norton Mobile Security

Lite v2.5.0.379 (Norton), and TrendMicro Mobile

Security Personal Edition v2.0.0.1294 (TrendMicro)

and download them from the official Android Market in the

first week of November 2011.

We install each of them on a separate Nexus One phone

running Android version 2.3.7. Before running the security

app, we always update it with the latest virus database. In

the test, we apply the default setting and enable the real-time

protection. After that, we create a script that iterates each

app in our dataset and then installs it on the phone. We will

wait for 30 seconds for the detection result before trying

the next app. If detected, these anti-virus software will pop

up an alert window, which will be recorded by our script.

After the first iteration, we further enable the second-round

scanning of those samples that are not detected in the first

Table VII
DETECTION RESULTS FROM FOUR REPRESENTATIVE MOBILE

ANTI-VIRUS SOFTWARE

#
AVG Lookout Norton

Trend

Micro

% # % # % # %

ADRD 22 22 100.0 13 59.0 5 22.7 11 50.0

AnserverBot 187 165 88.2 89 47.5 2 1.0 57 30.4

Asroot 8 3 37.5 0 0.0 0 0.0 6 75.0

BaseBridge 122 110 90.1 112 91.8 40 32.7 119 97.5

BeanBot 8 0 0.0 0 0.0 0 0.0 0 0.0

Bgserv 9 9 100.0 1 11.1 2 22.2 9 100.0

CoinPirate 1 0 0.0 0 0.0 0 0.0 0 0.0

CruseWin 2 0 0.0 2 100.0 2 100.0 2 100.0

DogWars 1 1 100.0 1 100.0 1 100.0 1 100.0

DroidCoupon 1 0 0.0 0 0.0 0 0.0 0 0.0

DroidDeluxe 1 1 100.0 1 100.0 0 0.0 1 100.0

DroidDream 16 11 68.7 16 100.0 9 56.2 16 100.0

DroidDreamLight 46 14 30.4 45 97.8 11 23.9 46 100.0

DroidKungFu1 34 34 100.0 34 100.0 2 5.8 33 97.0

DroidKungFu2 30 30 100.0 30 100.0 1 3.3 30 100.0

DroidKungFu3 309 0 0.0 307 99.3 1 0.3 305 98.7

DroidKungFu4 96 4 4.1 96 100.0 2 2.0 12 12.5

DroidKungFuSapp 3 0 0.0 0 0.0 0 0.0 0 0.0

DroidKungFuUpdate 1 0 0.0 1 100.0 0 0.0 0 0.0

Endofday 1 1 100.0 1 100.0 1 100.0 1 100.0

FakeNetflix 1 0 0.0 1 100.0 1 100.0 1 100.0

FakePlayer 6 6 100.0 6 100.0 6 100.0 6 100.0

GamblerSMS 1 0 0.0 0 0.0 0 0.0 1 100.0

Geinimi 69 69 100.0 69 100.0 38 55.0 67 97.1

GGTracker 1 1 100.0 1 100.0 1 100.0 1 100.0

GingerMaster 4 4 100.0 4 100.0 4 100.0 4 100.0

GoldDream 47 29 61.7 40 85.1 19 40.4 47 100.0

Gone60 9 9 100.0 9 100.0 4 44.4 7 77.7

GPSSMSSpy 6 0 0.0 6 100.0 2 33.3 3 50.0

HippoSMS 4 0 0.0 2 50.0 2 50.0 2 50.0

Jifake 1 0 0.0 1 100.0 0 0.0 1 100.0

jSMSHider 16 11 68.7 16 100.0 13 81.2 16 100.0

KMin 52 52 100.0 0 0.0 40 76.9 52 100.0

LoveTrap 1 0 0.0 1 100.0 1 100.0 1 100.0

NickyBot 1 0 0.0 0 0.0 0 0.0 0 0.0

NickySpy 2 2 100.0 2 100.0 2 100.0 2 100.0

Pjapps 58 44 75.8 57 98.2 26 44.8 50 86.2

Plankton 11 11 100.0 0 0.0 1 9.0 6 54.5

RogueLemon 2 0 0.0 0 0.0 0 0.0 0 0.0

RogueSPPush 9 9 100.0 3 33.3 0 0.0 8 88.8

SMSReplicator 1 1 100.0 1 100.0 1 100.0 1 100.0

SndApps 10 10 100.0 6 60.0 0 0.0 4 40.0

Spitmo 1 1 100.0 1 100.0 1 100.0 1 100.0

Tapsnake 2 0 0.0 2 100.0 1 50.0 1 50.0

Walkinwat 1 0 0.0 1 100.0 1 100.0 1 100.0

YZHC 22 1 4.5 1 4.5 3 13.6 10 45.4

zHash 11 11 100.0 11 100.0 2 18.1 11 100.0

Zitmo 1 1 100.0 1 100.0 1 100.0 1 100.0

Zsone 12 12 100.0 12 100.0 5 41.6 12 100.0

Detected Samples 689 1003 254 966

(out of 1260) (54.7%) (79.6%) (20.2%) (76.7%)

round. In the second round, we will wait for 60 seconds

to make sure that there is enough time for these security

software to scan the malware.

The scanning results are shown in Table VII. In the table,

the first two columns list the malware family and the number

of the samples in this malware family. The rest columns

show the number of samples as well as the percentage being

detected by the corresponding security software. At the end

of the table, we show the number of detected samples for

each anti-virus software and its corresponding detection rate.

The results are not encouraging: Lookout detected 1003

malware samples in 39 families; TrendMicro detected 966

samples in 42 families; AVG detected 689 samples in 32

families; and Norton detected the least samples (254) in 36

families.

Apparently, these security software take different ap-

proaches in their design and implementation, which lead

to different detection ratio even for the same malware

family. For example, AVG detects all ADRD samples in our

dataset, while Lookout detects 59.0% of them. Also, Lookout

detects most of DroidKungFu3 samples and all DroidKungFu4

samples while AVG can detect none of them (0.0%) or few

of them (4.1%).

There are some malware families that completely fail

these four mobile security software. Examples are BeanBot,

CoinPirate, DroidCoupon, DroidKungFuSapp, NickyBot and

RogueLemon. One reason is that they are relatively new

(discovered from August to October 2011). Therefore, ex-

isting mobile anti-virus companies may not get a chance to

obtain a copy of these samples or extract their signatures.

From another perspective, this does imply that they are still

taking traditional approaches to have a signature database

that represents known malware samples. As a result, if the

sample is not available, it is very likely that it will not be

detected.

VI. DISCUSSION

Our characterization of existing Android malware and an

evolution-based study of representative ones clearly reveal a

serious threat we are facing today. Unfortunately, existing

popular mobile security software still lag behind and it

becomes imperative to explore possible solutions to make

a difference.

First, our characterization shows that most existing An-

droid malware (86.0%) repackage other legitimate (popular)

apps, which indicates that we might be able to effectively

mitigate the threat by policing existing Android Markets for

repackaging detection. However, the challenges lie in the

large volume of new apps created on a daily basis as well as

the accuracy needed for repackaging detection. In addition,

the popularity of alternative Android Markets will also add

significant challenges. Though there is no clear solution in

sight, we do argue for a joint effort involving all parties in

the ecosystem to spot and discourage repackaged apps.

Second, our characterization also indicates that more than

one third (36.7%) of Android malware enclose platform-

level exploits to escalate their privilege. Unfortunately, the

open Android platform has the well-known “fragmentation”

problem, which leads to a long vulnerable time window

of current mobile devices before a patch can be actually

deployed. Worse, the current platform still lacks many

desirable security features. ASLR was not added until very

recently in Android 4.0. Other security features such as

TrustZone and eXecute-Never need to be gradually rolled

out to raise the bar for exploitation. Moreover, our analysis

reveals that the dynamic loading ability of both native code

and Dalvik code are being actively abused by existing

malware (e.g., DroidKungFu and AnserverBot). There is a

need to develop effective solutions to prevent them from

being abused while still allowing legitimate uses to proceed.

Third, our characterization shows that existing malware

(45.3%) tend to subscribe to premium-rate services with

background SMS messages. Related to that, most existing

malware intercept incoming SMS messages (e.g., to block

billing information or sidestep the second-confirmation re-

quirement). This problem might be rooted in the lack of fine-

grain control of related APIs (e.g., sendTextMessage).

Specifically, the coarse-grained Android permission model

can be possibly expanded to include additional context

information to better facilitate users to make sound and

informed decisions.

Fourth, the detection results of existing mobile security

software are rather disappointing, which does raise a chal-

lenging question on the best model for mobile malware de-

tection. Specifically, the unique runtime environments with

limited resources and battery could preclude the deployment

of sophisticated detection techniques. Also, the traditional

content-signature-based approaches have been demonstrated

not promising at all. From another perspective, the presence

of centralized marketplaces (including alternative ones) does

provide unique advantages in blocking mobile malware from

entering the marketplaces in the first place.

Last but not least, during the process of collecting mal-

ware samples into our current dataset, we felt confusions

from disorganized or confusing naming schemes. For ex-

ample, BaseBridge has another name AdSMS (by different

anti-virus companies); ADRD is the alias of Hongtoutou; and

LeNa is actually a DroidKungFu variant. One possible solution

may follow the common naming conventions used in desktop

space, which calls for the cooperation from different mobile

security software vendors.

VII. RELATED WORK

Smartphone security and privacy has recently become

a major concern. TaintDroid [34] and PiOS [35] are two

systems that expose possible privacy leaks on Android and

iOS, respectively. Comdroid [36] [37] and Woodpecker [38]

expose the confused deputy problem [39] on Android. Ac-

cordingly, researches have proposed several possible solu-

tions [37] [40] [41] to this issue. Stowaway [42] exposes

the over-privilege problem (where an app requests more

permissions than it uses) in existing apps. Schrittwieser et

al. [43] reports that certain security flaws exist in recent

network-facing messaging apps. Traynor et al. [44] charac-

terizes the impact of mobile botnet on the mobile network.

AdRisk [45] systematically identifies potential risks from

in-app advertisement libraries. Our work is different from

them with a unique focus on systematically characterizing

existing Android malware in the wild.

To improve the smartphone security and privacy, a

number of platform-level extensions have been proposed.

Specifically, Apex [46], MockDroid [47], TISSA [48] and

AppFence [49] extend the current Android framework to

provide find-grained controls of system resources accessed

by untrusted third-party apps. Saint [50] protects the exposed

interfaces of an app to others by allowing the app developers

to define related security policies for runtime enforcement.

Kirin [51] blocks the installation of suspicious apps by

examining the existence of certain dangerous permission

combination. L4Android [52] and Cells [53] run multiply

OSes on a single smartphone for improved isolation and

security. Note that none of them characterizes (or studies

the evolution of) existing Android malware, which is the

main focus of this work.

Among the most related, Felt et al. [54] surveys 46

malware samples on three different mobile platforms, i.e.,

iOS, Android and Symbian, analyzes their incentives, and

discusses possible defenses. In contrast, we examine a much

larger dataset (with 1, 260 malware samples in 49 different

families) on one single popular platform – Android. The

size of our dataset is instrumental to systematically charac-

terizing malware infection behavior and understanding their

evolution. Moreover, the subsequent test of existing mobile

security software further necessitates a change for effective

anti-mobile-malware solutions.

From another perspective, Becher et al. [55] provides

a survey of mobile network security, from the hardware

layer to the user-centric attacks. DroidRanger [56] detects

malicious apps in existing official and alternative Android

Markets. DroidMOSS [57] uses the fuzzy hashing to de-

tect the repackaged apps (potential malware) in third-party

android markets. Enck et al. [58] studies 1, 100 top free

(benign) Android apps to better understand the security

characteristics of these apps. Our work differs from them by

focusing on 1, 260 malicious apps (accumulated from more

than one year effort) and presenting a systematic study of

their installation, activation, and payloads.

VIII. CONCLUSION

In this paper, we present a systematic characterization

of existing Android malware. The characterization is made

possible with our more than one-year effort in collecting

1260 Android malware samples in 49 different families,

which covers the majority of existing Android malware,

ranging from its debut in August 2010 to recent ones in Oc-

tober 2011. By characterizing these malware samples from

various aspects, our results show that (1) 86.0% of them

repackage legitimate apps to include malicious payloads; (2)

36.7% contain platform-level exploits to escalate privilege;

(3) 93.0% exhibit the bot-like capability. A further in-

depth evolution analysis of representative Android malware

shows the rapid development and increased sophistication,

posing significant challenges for their detection. Sadly, the

evaluation with four existing mobile anti-virus software

shows that the best case detects 79.6% of them while the

worst case detects only 20.2%. These results call for the

need to better develop next-generation anti-mobile-malware

solutions.

ACKNOWLEDGMENT

We would like to thank our shepherd, Patrick Traynor, and

the anonymous reviewers for their comments that greatly

helped improve the presentation of this paper. We also

want to thank Michael Grace, Zhi Wang, Wu Zhou, Deepa

Srinivasan, Minh Q. Tran, and Lei Wu for the helpful

discussion. This work was supported in part by the US

National Science Foundation (NSF) under Grants 0855297,

0855036, 0910767, and 0952640. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the NSF.

REFERENCES

[1] (2011) Smartphone Shipments Tripled Since ’08. Dumb
Phones Are Flat. http://tech.fortune.cnn.com/2011/11/01/
smartphone-shipments-tripled-since-08-dumb-phones-are-
flat.

[2] Number of the Week: at Least 34% of Android Malware Is
Stealing Your Data. http://www.kaspersky.com/about/news/
virus/2011/Number of the Week at Least 34 of Android
Malware Is Stealing Your Data.

[3] Malicious Mobile Threats Report 2010/2011. http://www.
juniper.net/us/en/company/press-center/press-releases/2011/
pr 2011 05 10-09 00.html.

[4] Security Alert: AnserverBot, New Sophisticated Android Bot
Found in Alternative Android Markets. http://www.csc.ncsu.
edu/faculty/jiang/AnserverBot/.

[5] Security Alert: New Stealthy Android Spyware – Plankton –
Found in Official Android Market. http://www.csc.ncsu.edu/
faculty/jiang/Plankton/.

[6] Lookout Mobile Security. https://www.mylookout.com/.

[7] NetQin Mobile Security. http://www.netqin.com/en/.

[8] AVG Mobilation. http://free.avg.com/us-en/antivirus-for-
android.tpl-crp.

[9] Symantec. http://www.symantec.com/.

[10] Fortinet. http://www.fortinet.com/.

[11] TrendMicro. http://www.virustotal.com/.

[12] Security Alerts. http://www.csc.ncsu.edu/faculty/jiang/.

[13] One Year Of Android Malware (Full List). http://
paulsparrows.wordpress.com/2011/08/11/one-year-of-
android-malware-full-list/.

[14] Security Alert: New DroidKungFu Variant – AGAIN! –
Found in Alternative Android Markets. http://www.csc.ncsu.
edu/faculty/jiang/DroidKungFu3/.

[15] Android.Bgserv Found on Fake Google Security Patch.
http://www.symantec.com/connect/blogs/androidbgserv-
found-fake-google-security-patch.

[16] WAPS. http://www.waps.cn/.

[17] GGTracker Technical Tear Down. http://blog.mylookout.
com/wp-content/uploads/2011/06/GGTracker-Teardown
Lookout-Mobile-Security.pdf.

[18] Malicious QR Codes Pushing Android Malware. https://www.
securelist.com/en/blog/208193145/Its time for malicious
QR codes.

[19] First SpyEye Attack on Android Mobile Platform now in
the Wild. https://www.trusteer.com/blog/first-spyeye-attack-
android-mobile-platform-now-wild.

[20] ZeuS-in-the-Mobile - Facts and Theories. http://www.
securelist.com/en/analysis/204792194/ZeuS in the Mobile
Facts and Theories.

[21] QR code. http://en.wikipedia.org/wiki/QR code.

[22] Using QR tags to Attack SmartPhones (Attaging). http://
kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-
attack-smartphones 10.html.

[23] Asroot. http://milw0rm.com/sploits/android-root-20090816.
tar.gz.

[24] android trickery. http://c-skills.blogspot.com/2010/07/
android-trickery.html.

[25] Droid2. http://c-skills.blogspot.com/2010/08/droid2.html.

[26] Zimperlich sources. http://c-skills.blogspot.com/2011/02/
zimperlich-sources.html.

[27] adb trickery #2. http://c-skills.blogspot.com/2011/01/adb-
trickery-again.html.

[28] yummy yummy, GingerBreak! http://c-skills.blogspot.com/
2011/04/yummy-yummy-gingerbreak.html.

[29] Revolutionary - zergRush local root 2.2/2.3. http://forum.xda-
developers.com/showthread.php?t=1296916.

[30] Security Alert: New Sophisticated Android Malware Droid-
KungFu Found in Alternative Chinese App Markets. http://
www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html.

[31] LeNa (Legacy Native) Teardown. http://blog.mylookout.
com/wp-content/uploads/2011/10/LeNa-Legacy-Native-
Teardown Lookout-Mobile-Security1.pdf.

[32] DroidKungFu Utilizes an Update Attack. http://www.f-secure.
com/weblog/archives/00002259.html.

[33] An Analysis of the AnserverBot Trojan. http://www.csc.ncsu.
edu/faculty/jiang/pubs/AnserverBot Analysis.pdf.

http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://www.juniper.net/us/en/company/press-center/press-releases/2011/pr_2011_05_10-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2011/pr_2011_05_10-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2011/pr_2011_05_10-09_00.html
http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/
http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/
http://www.csc.ncsu.edu/faculty/jiang/Plankton/
http://www.csc.ncsu.edu/faculty/jiang/Plankton/
https://www.mylookout.com/
http://www.netqin.com/en/
http://free.avg.com/us-en/antivirus-for-android.tpl-crp
http://free.avg.com/us-en/antivirus-for-android.tpl-crp
http://www.symantec.com/
http://www.fortinet.com/
http://www.virustotal.com/
http://www.csc.ncsu.edu/faculty/jiang/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
http://www.symantec.com/connect/blogs/androidbgserv-found-fake-google-security-patch
http://www.symantec.com/connect/blogs/androidbgserv-found-fake-google-security-patch
http://www.waps.cn/
http://blog.mylookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
http://blog.mylookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
http://blog.mylookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
https://www. securelist.com/en/blog/208193145/Its_time_for_malicious_QR_codes
https://www. securelist.com/en/blog/208193145/Its_time_for_malicious_QR_codes
https://www. securelist.com/en/blog/208193145/Its_time_for_malicious_QR_codes
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://en.wikipedia.org/wiki/QR_code
http://kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-attack-smartphones_10.html
http://kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-attack-smartphones_10.html
http://kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-attack-smartphones_10.html
http://milw0rm.com/sploits/android-root-20090816.tar.gz
http://milw0rm.com/sploits/android-root-20090816.tar.gz
http://c-skills.blogspot.com/2010/07/android-trickery.html
http://c-skills.blogspot.com/2010/07/android-trickery.html
http://c-skills.blogspot.com/2010/08/droid2.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf
http://blog.mylookout.com/wp-content/uploads/2011/10/LeNa-Legacy-Native-Teardown_Lookout-Mobile-Security1.pdf
http://www.f-secure.com/weblog/archives/00002259.html
http://www.f-secure.com/weblog/archives/00002259.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf

[34] W. Enck, P. Gilbert, B.-g. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smart-
phones,” in Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, 2010.

[35] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting Privacy Leaks in iOS Applications,” in Proceedings
of the 18th Annual Symposium on Network and Distributed
System Security, 2011.

[36] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “An-
alyzing Inter-Application Communication in Android,” in
9th Annual International Conference on Mobile Systems,
Applications, and Services, 2011.

[37] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission Re-Delegation: Attacks and Defenses,” in Pro-
ceedings of the 20th USENIX Security Symposium, 2011.

[38] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic De-
tection of Capability Leaks in Stock Android Smartphones,”
in Proceedings of the 19th Annual Symposium on Network
and Distributed System Security, 2012.

[39] N. Hardy, “The Confused Deputy: (or why capabilities might
have been invented),” ACM SIGOPS Operating Systems Re-
view, vol. 22, October 1998.

[40] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“QUIRE: Lightweight Provenance for Smart Phone Operat-
ing Systems,” in Proceedings of the 20th USENIX Security
Symposium, 2011.

[41] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry, “Towards Taming Privilege-Escalation At-
tacks on Android,” in Proceedings of the 19th Annual Sym-
posium on Network and Distributed System Security, 2012.

[42] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android Permissions Demystied,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security,
2011.

[43] S. Schrittwieser, P. Frhwirt, P. Kieseberg, M. Leithner,
M. Mulazzani, M. Huber, and E. Weippl, “Guess Who’s Tex-
ting You? Evaluating the Security of Smartphone Messaging
Applications,” in Proceedings of the 19th Annual Symposium
on Network and Distributed System Security, 2012.

[44] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. Mc-
Daniel, and T. L. Porta, “On Cellular Botnets: Measuring the
Impact of Malicious Devices on a Cellular Network Core,” in
Proceedings of the 16th ACM Conference on Computer and
Communications Security, 2009.

[45] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe
Exposure Analysis of Mobile In-App Advertisements,” in
Proceedings of the 5th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2012.

[46] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending
Android Permission Model and Enforcement with User-
Defined Runtime Constraints,” in Proceedings of the 5th ACM
Symposium on Information, Computer and Communications
Security, 2010.

[47] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mock-
Droid: Trading Privacy for Application Functionality on
Smartphones,” in Proceedings of the 12th International Work-
shop on Mobile Computing System and Applications, 2011.

[48] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
Information-Stealing Smartphone Applications (on Android),”
in Proceeding of the 4th International Conference on Trust
and Trustworthy Computing, 2011.

[49] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall,
“These Aren’t the Droids You’re Looking For: Retrofitting
Android to Protect Data from Imperious Applications,” in
Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011.

[50] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,
“Semantically Rich Application-Centric Security in Android,”
in Proceedings of the 25th Annual Computer Security Appli-
cations Conference.

[51] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight
Mobile Phone Application Certification,” in Proceedings of
the 16th ACM Conference on Computer and Communications
Security, 2009.

[52] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and
M. Peter, “L4Android: A Generic Operating System Frame-
work for Secure Smartphones,” in Proceedings of the 1st
Workshop on Security and Privacy in Smartphones and Mo-
bile Devices, 2011.

[53] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J. Nieh,
“Cells: A Virtual Mobile Smartphone Architecture,” in Pro-
ceedings of the 23rd ACM Symposium on Operating Systems
Principles, 2011.

[54] A. Porter Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,
“A Survey of Mobile Malware In The Wild,” in Proceedings
of the 1st Workshop on Security and Privacy in Smartphones
and Mobile Devices, 2011.

[55] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellen-
beck, and C. Wolf, “Mobile Security Catching Up? Revealing
the Nuts and Bolts of the Security of Mobile Devices,” in
Proceedings of the 32nd IEEE Symposium on Security and
Privacy, 2011.

[56] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get
off of My Market: Detecting Malicious Apps in Official
and Alternative Android Markets,” in Proceedings of the
19th Annual Symposium on Network and Distributed System
Security, 2012.

[57] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “DroidMOSS:
Detecting Repackaged Smartphone Applications in Third-
Party Android Marketplaces,” in Proceedings of the 2nd ACM
Conference on Data and Application Security and Privacy,
2012.

[58] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A
Study of Android Application Security,” in Proceedings of
the 20th USENIX Security Symposium, 2011.

